Extensions 1→N→G→Q→1 with N=C3×Dic7 and Q=C4

Direct product G=N×Q with N=C3×Dic7 and Q=C4
dρLabelID
C12×Dic7336C12xDic7336,65

Semidirect products G=N:Q with N=C3×Dic7 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×Dic7)⋊1C4 = Dic3×Dic7φ: C4/C2C2 ⊆ Out C3×Dic7336(C3xDic7):1C4336,41
(C3×Dic7)⋊2C4 = C42.Q8φ: C4/C2C2 ⊆ Out C3×Dic7336(C3xDic7):2C4336,45
(C3×Dic7)⋊3C4 = C3×Dic7⋊C4φ: C4/C2C2 ⊆ Out C3×Dic7336(C3xDic7):3C4336,66

Non-split extensions G=N.Q with N=C3×Dic7 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×Dic7).1C4 = D7×C3⋊C8φ: C4/C2C2 ⊆ Out C3×Dic71684(C3xDic7).1C4336,23
(C3×Dic7).2C4 = C28.32D6φ: C4/C2C2 ⊆ Out C3×Dic71684(C3xDic7).2C4336,26
(C3×Dic7).3C4 = C3×C8⋊D7φ: C4/C2C2 ⊆ Out C3×Dic71682(C3xDic7).3C4336,59
(C3×Dic7).4C4 = D7×C24φ: trivial image1682(C3xDic7).4C4336,58

׿
×
𝔽