direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: C3×Dic7, C21⋊2C4, C7⋊3C12, C6.2D7, C42.2C2, C14.3C6, C2.(C3×D7), SmallGroup(84,4)
Series: Derived ►Chief ►Lower central ►Upper central
C7 — C3×Dic7 |
Generators and relations for C3×Dic7
G = < a,b,c | a3=b14=1, c2=b7, ab=ba, ac=ca, cbc-1=b-1 >
Character table of C3×Dic7
class | 1 | 2 | 3A | 3B | 4A | 4B | 6A | 6B | 7A | 7B | 7C | 12A | 12B | 12C | 12D | 14A | 14B | 14C | 21A | 21B | 21C | 21D | 21E | 21F | 42A | 42B | 42C | 42D | 42E | 42F | |
size | 1 | 1 | 1 | 1 | 7 | 7 | 1 | 1 | 2 | 2 | 2 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ4 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ5 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | ζ3 | ζ32 | 1 | 1 | 1 | ζ65 | ζ6 | ζ65 | ζ6 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 6 |
ρ6 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | ζ32 | ζ3 | 1 | 1 | 1 | ζ6 | ζ65 | ζ6 | ζ65 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 6 |
ρ7 | 1 | -1 | 1 | 1 | i | -i | -1 | -1 | 1 | 1 | 1 | i | i | -i | -i | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ8 | 1 | -1 | 1 | 1 | -i | i | -1 | -1 | 1 | 1 | 1 | -i | -i | i | i | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ9 | 1 | -1 | ζ32 | ζ3 | i | -i | ζ65 | ζ6 | 1 | 1 | 1 | ζ4ζ3 | ζ4ζ32 | ζ43ζ3 | ζ43ζ32 | -1 | -1 | -1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ6 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | linear of order 12 |
ρ10 | 1 | -1 | ζ3 | ζ32 | i | -i | ζ6 | ζ65 | 1 | 1 | 1 | ζ4ζ32 | ζ4ζ3 | ζ43ζ32 | ζ43ζ3 | -1 | -1 | -1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ65 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | linear of order 12 |
ρ11 | 1 | -1 | ζ32 | ζ3 | -i | i | ζ65 | ζ6 | 1 | 1 | 1 | ζ43ζ3 | ζ43ζ32 | ζ4ζ3 | ζ4ζ32 | -1 | -1 | -1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ6 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | linear of order 12 |
ρ12 | 1 | -1 | ζ3 | ζ32 | -i | i | ζ6 | ζ65 | 1 | 1 | 1 | ζ43ζ32 | ζ43ζ3 | ζ4ζ32 | ζ4ζ3 | -1 | -1 | -1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ65 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | linear of order 12 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 0 | 0 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | orthogonal lifted from D7 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 0 | 0 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | orthogonal lifted from D7 |
ρ15 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 0 | 0 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | orthogonal lifted from D7 |
ρ16 | 2 | -2 | 2 | 2 | 0 | 0 | -2 | -2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 0 | 0 | 0 | 0 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ75-ζ72 | -ζ74-ζ73 | symplectic lifted from Dic7, Schur index 2 |
ρ17 | 2 | -2 | 2 | 2 | 0 | 0 | -2 | -2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 0 | 0 | 0 | 0 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ76-ζ7 | -ζ75-ζ72 | symplectic lifted from Dic7, Schur index 2 |
ρ18 | 2 | -2 | 2 | 2 | 0 | 0 | -2 | -2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 0 | 0 | 0 | 0 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ74-ζ73 | -ζ76-ζ7 | symplectic lifted from Dic7, Schur index 2 |
ρ19 | 2 | 2 | -1-√-3 | -1+√-3 | 0 | 0 | -1+√-3 | -1-√-3 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 0 | 0 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ32ζ74+ζ32ζ73 | ζ3ζ74+ζ3ζ73 | ζ3ζ76+ζ3ζ7 | ζ32ζ76+ζ32ζ7 | ζ32ζ75+ζ32ζ72 | ζ3ζ75+ζ3ζ72 | ζ32ζ74+ζ32ζ73 | ζ3ζ75+ζ3ζ72 | ζ3ζ74+ζ3ζ73 | ζ3ζ76+ζ3ζ7 | ζ32ζ76+ζ32ζ7 | ζ32ζ75+ζ32ζ72 | complex lifted from C3×D7 |
ρ20 | 2 | -2 | -1+√-3 | -1-√-3 | 0 | 0 | 1+√-3 | 1-√-3 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 0 | 0 | 0 | 0 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | ζ3ζ74+ζ3ζ73 | ζ32ζ74+ζ32ζ73 | ζ32ζ76+ζ32ζ7 | ζ3ζ76+ζ3ζ7 | ζ3ζ75+ζ3ζ72 | ζ32ζ75+ζ32ζ72 | -ζ3ζ74-ζ3ζ73 | -ζ32ζ75-ζ32ζ72 | -ζ32ζ74-ζ32ζ73 | -ζ32ζ76-ζ32ζ7 | -ζ3ζ76-ζ3ζ7 | -ζ3ζ75-ζ3ζ72 | complex faithful, Schur index 2 |
ρ21 | 2 | 2 | -1+√-3 | -1-√-3 | 0 | 0 | -1-√-3 | -1+√-3 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 0 | 0 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ3ζ76+ζ3ζ7 | ζ32ζ76+ζ32ζ7 | ζ32ζ75+ζ32ζ72 | ζ3ζ75+ζ3ζ72 | ζ3ζ74+ζ3ζ73 | ζ32ζ74+ζ32ζ73 | ζ3ζ76+ζ3ζ7 | ζ32ζ74+ζ32ζ73 | ζ32ζ76+ζ32ζ7 | ζ32ζ75+ζ32ζ72 | ζ3ζ75+ζ3ζ72 | ζ3ζ74+ζ3ζ73 | complex lifted from C3×D7 |
ρ22 | 2 | 2 | -1+√-3 | -1-√-3 | 0 | 0 | -1-√-3 | -1+√-3 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 0 | 0 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ3ζ75+ζ3ζ72 | ζ32ζ75+ζ32ζ72 | ζ32ζ74+ζ32ζ73 | ζ3ζ74+ζ3ζ73 | ζ3ζ76+ζ3ζ7 | ζ32ζ76+ζ32ζ7 | ζ3ζ75+ζ3ζ72 | ζ32ζ76+ζ32ζ7 | ζ32ζ75+ζ32ζ72 | ζ32ζ74+ζ32ζ73 | ζ3ζ74+ζ3ζ73 | ζ3ζ76+ζ3ζ7 | complex lifted from C3×D7 |
ρ23 | 2 | -2 | -1-√-3 | -1+√-3 | 0 | 0 | 1-√-3 | 1+√-3 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 0 | 0 | 0 | 0 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | ζ32ζ74+ζ32ζ73 | ζ3ζ74+ζ3ζ73 | ζ3ζ76+ζ3ζ7 | ζ32ζ76+ζ32ζ7 | ζ32ζ75+ζ32ζ72 | ζ3ζ75+ζ3ζ72 | -ζ32ζ74-ζ32ζ73 | -ζ3ζ75-ζ3ζ72 | -ζ3ζ74-ζ3ζ73 | -ζ3ζ76-ζ3ζ7 | -ζ32ζ76-ζ32ζ7 | -ζ32ζ75-ζ32ζ72 | complex faithful, Schur index 2 |
ρ24 | 2 | 2 | -1-√-3 | -1+√-3 | 0 | 0 | -1+√-3 | -1-√-3 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 0 | 0 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ32ζ76+ζ32ζ7 | ζ3ζ76+ζ3ζ7 | ζ3ζ75+ζ3ζ72 | ζ32ζ75+ζ32ζ72 | ζ32ζ74+ζ32ζ73 | ζ3ζ74+ζ3ζ73 | ζ32ζ76+ζ32ζ7 | ζ3ζ74+ζ3ζ73 | ζ3ζ76+ζ3ζ7 | ζ3ζ75+ζ3ζ72 | ζ32ζ75+ζ32ζ72 | ζ32ζ74+ζ32ζ73 | complex lifted from C3×D7 |
ρ25 | 2 | -2 | -1-√-3 | -1+√-3 | 0 | 0 | 1-√-3 | 1+√-3 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 0 | 0 | 0 | 0 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | ζ32ζ76+ζ32ζ7 | ζ3ζ76+ζ3ζ7 | ζ3ζ75+ζ3ζ72 | ζ32ζ75+ζ32ζ72 | ζ32ζ74+ζ32ζ73 | ζ3ζ74+ζ3ζ73 | -ζ32ζ76-ζ32ζ7 | -ζ3ζ74-ζ3ζ73 | -ζ3ζ76-ζ3ζ7 | -ζ3ζ75-ζ3ζ72 | -ζ32ζ75-ζ32ζ72 | -ζ32ζ74-ζ32ζ73 | complex faithful, Schur index 2 |
ρ26 | 2 | -2 | -1+√-3 | -1-√-3 | 0 | 0 | 1+√-3 | 1-√-3 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 0 | 0 | 0 | 0 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | ζ3ζ75+ζ3ζ72 | ζ32ζ75+ζ32ζ72 | ζ32ζ74+ζ32ζ73 | ζ3ζ74+ζ3ζ73 | ζ3ζ76+ζ3ζ7 | ζ32ζ76+ζ32ζ7 | -ζ3ζ75-ζ3ζ72 | -ζ32ζ76-ζ32ζ7 | -ζ32ζ75-ζ32ζ72 | -ζ32ζ74-ζ32ζ73 | -ζ3ζ74-ζ3ζ73 | -ζ3ζ76-ζ3ζ7 | complex faithful, Schur index 2 |
ρ27 | 2 | -2 | -1-√-3 | -1+√-3 | 0 | 0 | 1-√-3 | 1+√-3 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 0 | 0 | 0 | 0 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | ζ32ζ75+ζ32ζ72 | ζ3ζ75+ζ3ζ72 | ζ3ζ74+ζ3ζ73 | ζ32ζ74+ζ32ζ73 | ζ32ζ76+ζ32ζ7 | ζ3ζ76+ζ3ζ7 | -ζ32ζ75-ζ32ζ72 | -ζ3ζ76-ζ3ζ7 | -ζ3ζ75-ζ3ζ72 | -ζ3ζ74-ζ3ζ73 | -ζ32ζ74-ζ32ζ73 | -ζ32ζ76-ζ32ζ7 | complex faithful, Schur index 2 |
ρ28 | 2 | 2 | -1-√-3 | -1+√-3 | 0 | 0 | -1+√-3 | -1-√-3 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 0 | 0 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ32ζ75+ζ32ζ72 | ζ3ζ75+ζ3ζ72 | ζ3ζ74+ζ3ζ73 | ζ32ζ74+ζ32ζ73 | ζ32ζ76+ζ32ζ7 | ζ3ζ76+ζ3ζ7 | ζ32ζ75+ζ32ζ72 | ζ3ζ76+ζ3ζ7 | ζ3ζ75+ζ3ζ72 | ζ3ζ74+ζ3ζ73 | ζ32ζ74+ζ32ζ73 | ζ32ζ76+ζ32ζ7 | complex lifted from C3×D7 |
ρ29 | 2 | -2 | -1+√-3 | -1-√-3 | 0 | 0 | 1+√-3 | 1-√-3 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 0 | 0 | 0 | 0 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | ζ3ζ76+ζ3ζ7 | ζ32ζ76+ζ32ζ7 | ζ32ζ75+ζ32ζ72 | ζ3ζ75+ζ3ζ72 | ζ3ζ74+ζ3ζ73 | ζ32ζ74+ζ32ζ73 | -ζ3ζ76-ζ3ζ7 | -ζ32ζ74-ζ32ζ73 | -ζ32ζ76-ζ32ζ7 | -ζ32ζ75-ζ32ζ72 | -ζ3ζ75-ζ3ζ72 | -ζ3ζ74-ζ3ζ73 | complex faithful, Schur index 2 |
ρ30 | 2 | 2 | -1+√-3 | -1-√-3 | 0 | 0 | -1-√-3 | -1+√-3 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 0 | 0 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ3ζ74+ζ3ζ73 | ζ32ζ74+ζ32ζ73 | ζ32ζ76+ζ32ζ7 | ζ3ζ76+ζ3ζ7 | ζ3ζ75+ζ3ζ72 | ζ32ζ75+ζ32ζ72 | ζ3ζ74+ζ3ζ73 | ζ32ζ75+ζ32ζ72 | ζ32ζ74+ζ32ζ73 | ζ32ζ76+ζ32ζ7 | ζ3ζ76+ζ3ζ7 | ζ3ζ75+ζ3ζ72 | complex lifted from C3×D7 |
(1 32 27)(2 33 28)(3 34 15)(4 35 16)(5 36 17)(6 37 18)(7 38 19)(8 39 20)(9 40 21)(10 41 22)(11 42 23)(12 29 24)(13 30 25)(14 31 26)(43 71 57)(44 72 58)(45 73 59)(46 74 60)(47 75 61)(48 76 62)(49 77 63)(50 78 64)(51 79 65)(52 80 66)(53 81 67)(54 82 68)(55 83 69)(56 84 70)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)
(1 50 8 43)(2 49 9 56)(3 48 10 55)(4 47 11 54)(5 46 12 53)(6 45 13 52)(7 44 14 51)(15 62 22 69)(16 61 23 68)(17 60 24 67)(18 59 25 66)(19 58 26 65)(20 57 27 64)(21 70 28 63)(29 81 36 74)(30 80 37 73)(31 79 38 72)(32 78 39 71)(33 77 40 84)(34 76 41 83)(35 75 42 82)
G:=sub<Sym(84)| (1,32,27)(2,33,28)(3,34,15)(4,35,16)(5,36,17)(6,37,18)(7,38,19)(8,39,20)(9,40,21)(10,41,22)(11,42,23)(12,29,24)(13,30,25)(14,31,26)(43,71,57)(44,72,58)(45,73,59)(46,74,60)(47,75,61)(48,76,62)(49,77,63)(50,78,64)(51,79,65)(52,80,66)(53,81,67)(54,82,68)(55,83,69)(56,84,70), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84), (1,50,8,43)(2,49,9,56)(3,48,10,55)(4,47,11,54)(5,46,12,53)(6,45,13,52)(7,44,14,51)(15,62,22,69)(16,61,23,68)(17,60,24,67)(18,59,25,66)(19,58,26,65)(20,57,27,64)(21,70,28,63)(29,81,36,74)(30,80,37,73)(31,79,38,72)(32,78,39,71)(33,77,40,84)(34,76,41,83)(35,75,42,82)>;
G:=Group( (1,32,27)(2,33,28)(3,34,15)(4,35,16)(5,36,17)(6,37,18)(7,38,19)(8,39,20)(9,40,21)(10,41,22)(11,42,23)(12,29,24)(13,30,25)(14,31,26)(43,71,57)(44,72,58)(45,73,59)(46,74,60)(47,75,61)(48,76,62)(49,77,63)(50,78,64)(51,79,65)(52,80,66)(53,81,67)(54,82,68)(55,83,69)(56,84,70), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84), (1,50,8,43)(2,49,9,56)(3,48,10,55)(4,47,11,54)(5,46,12,53)(6,45,13,52)(7,44,14,51)(15,62,22,69)(16,61,23,68)(17,60,24,67)(18,59,25,66)(19,58,26,65)(20,57,27,64)(21,70,28,63)(29,81,36,74)(30,80,37,73)(31,79,38,72)(32,78,39,71)(33,77,40,84)(34,76,41,83)(35,75,42,82) );
G=PermutationGroup([[(1,32,27),(2,33,28),(3,34,15),(4,35,16),(5,36,17),(6,37,18),(7,38,19),(8,39,20),(9,40,21),(10,41,22),(11,42,23),(12,29,24),(13,30,25),(14,31,26),(43,71,57),(44,72,58),(45,73,59),(46,74,60),(47,75,61),(48,76,62),(49,77,63),(50,78,64),(51,79,65),(52,80,66),(53,81,67),(54,82,68),(55,83,69),(56,84,70)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84)], [(1,50,8,43),(2,49,9,56),(3,48,10,55),(4,47,11,54),(5,46,12,53),(6,45,13,52),(7,44,14,51),(15,62,22,69),(16,61,23,68),(17,60,24,67),(18,59,25,66),(19,58,26,65),(20,57,27,64),(21,70,28,63),(29,81,36,74),(30,80,37,73),(31,79,38,72),(32,78,39,71),(33,77,40,84),(34,76,41,83),(35,75,42,82)]])
C3×Dic7 is a maximal subgroup of
D21⋊C4 C7⋊D12 C21⋊Q8 C12×D7 C7⋊C36 Dic7.2A4
Matrix representation of C3×Dic7 ►in GL2(𝔽13) generated by
9 | 0 |
0 | 9 |
1 | 5 |
11 | 4 |
8 | 1 |
0 | 5 |
G:=sub<GL(2,GF(13))| [9,0,0,9],[1,11,5,4],[8,0,1,5] >;
C3×Dic7 in GAP, Magma, Sage, TeX
C_3\times {\rm Dic}_7
% in TeX
G:=Group("C3xDic7");
// GroupNames label
G:=SmallGroup(84,4);
// by ID
G=gap.SmallGroup(84,4);
# by ID
G:=PCGroup([4,-2,-3,-2,-7,24,1155]);
// Polycyclic
G:=Group<a,b,c|a^3=b^14=1,c^2=b^7,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C3×Dic7 in TeX
Character table of C3×Dic7 in TeX