Extensions 1→N→G→Q→1 with N=C6 and Q=Dic14

Direct product G=N×Q with N=C6 and Q=Dic14

Semidirect products G=N:Q with N=C6 and Q=Dic14
extensionφ:Q→Aut NdρLabelID
C61Dic14 = C2×C21⋊Q8φ: Dic14/Dic7C2 ⊆ Aut C6336C6:1Dic14336,160
C62Dic14 = C2×Dic42φ: Dic14/C28C2 ⊆ Aut C6336C6:2Dic14336,194

Non-split extensions G=N.Q with N=C6 and Q=Dic14
extensionφ:Q→Aut NdρLabelID
C6.1Dic14 = C42.Q8φ: Dic14/Dic7C2 ⊆ Aut C6336C6.1Dic14336,45
C6.2Dic14 = Dic21⋊C4φ: Dic14/Dic7C2 ⊆ Aut C6336C6.2Dic14336,46
C6.3Dic14 = C14.Dic6φ: Dic14/Dic7C2 ⊆ Aut C6336C6.3Dic14336,47
C6.4Dic14 = C42.4Q8φ: Dic14/C28C2 ⊆ Aut C6336C6.4Dic14336,98
C6.5Dic14 = C84⋊C4φ: Dic14/C28C2 ⊆ Aut C6336C6.5Dic14336,99
C6.6Dic14 = C3×Dic7⋊C4central extension (φ=1)336C6.6Dic14336,66
C6.7Dic14 = C3×C4⋊Dic7central extension (φ=1)336C6.7Dic14336,67