Copied to
clipboard

G = Dic14order 56 = 23·7

Dicyclic group

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: Dic14, C7⋊Q8, C4.D7, C28.1C2, C2.3D14, Dic7.C2, C14.1C22, SmallGroup(56,3)

Series: Derived Chief Lower central Upper central

C1C14 — Dic14
C1C7C14Dic7 — Dic14
C7C14 — Dic14
C1C2C4

Generators and relations for Dic14
 G = < a,b | a28=1, b2=a14, bab-1=a-1 >

7C4
7C4
7Q8

Character table of Dic14

 class 124A4B4C7A7B7C14A14B14C28A28B28C28D28E28F
 size 1121414222222222222
ρ111111111111111111    trivial
ρ211-11-1111111-1-1-1-1-1-1    linear of order 2
ρ3111-1-1111111111111    linear of order 2
ρ411-1-11111111-1-1-1-1-1-1    linear of order 2
ρ522-200ζ7572ζ7473ζ767ζ7473ζ767ζ75727572757276774737473767    orthogonal lifted from D14
ρ622-200ζ767ζ7572ζ7473ζ7572ζ7473ζ7677677677473757275727473    orthogonal lifted from D14
ρ722200ζ767ζ7572ζ7473ζ7572ζ7473ζ767ζ767ζ767ζ7473ζ7572ζ7572ζ7473    orthogonal lifted from D7
ρ822-200ζ7473ζ767ζ7572ζ767ζ7572ζ74737473747375727677677572    orthogonal lifted from D14
ρ922200ζ7473ζ767ζ7572ζ767ζ7572ζ7473ζ7473ζ7473ζ7572ζ767ζ767ζ7572    orthogonal lifted from D7
ρ1022200ζ7572ζ7473ζ767ζ7473ζ767ζ7572ζ7572ζ7572ζ767ζ7473ζ7473ζ767    orthogonal lifted from D7
ρ112-2000222-2-2-2000000    symplectic lifted from Q8, Schur index 2
ρ122-2000ζ7572ζ7473ζ76774737677572ζ4ζ754ζ724ζ754ζ7243ζ7643ζ74ζ744ζ73ζ4ζ744ζ73ζ43ζ7643ζ7    symplectic faithful, Schur index 2
ρ132-2000ζ7473ζ767ζ757276775727473ζ4ζ744ζ734ζ744ζ734ζ754ζ72ζ43ζ7643ζ743ζ7643ζ7ζ4ζ754ζ72    symplectic faithful, Schur index 2
ρ142-2000ζ7572ζ7473ζ767747376775724ζ754ζ72ζ4ζ754ζ72ζ43ζ7643ζ7ζ4ζ744ζ734ζ744ζ7343ζ7643ζ7    symplectic faithful, Schur index 2
ρ152-2000ζ7473ζ767ζ7572767757274734ζ744ζ73ζ4ζ744ζ73ζ4ζ754ζ7243ζ7643ζ7ζ43ζ7643ζ74ζ754ζ72    symplectic faithful, Schur index 2
ρ162-2000ζ767ζ7572ζ747375727473767ζ43ζ7643ζ743ζ7643ζ7ζ4ζ744ζ734ζ754ζ72ζ4ζ754ζ724ζ744ζ73    symplectic faithful, Schur index 2
ρ172-2000ζ767ζ7572ζ74737572747376743ζ7643ζ7ζ43ζ7643ζ74ζ744ζ73ζ4ζ754ζ724ζ754ζ72ζ4ζ744ζ73    symplectic faithful, Schur index 2

Smallest permutation representation of Dic14
Regular action on 56 points
Generators in S56
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 45 15 31)(2 44 16 30)(3 43 17 29)(4 42 18 56)(5 41 19 55)(6 40 20 54)(7 39 21 53)(8 38 22 52)(9 37 23 51)(10 36 24 50)(11 35 25 49)(12 34 26 48)(13 33 27 47)(14 32 28 46)

G:=sub<Sym(56)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,45,15,31)(2,44,16,30)(3,43,17,29)(4,42,18,56)(5,41,19,55)(6,40,20,54)(7,39,21,53)(8,38,22,52)(9,37,23,51)(10,36,24,50)(11,35,25,49)(12,34,26,48)(13,33,27,47)(14,32,28,46)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,45,15,31)(2,44,16,30)(3,43,17,29)(4,42,18,56)(5,41,19,55)(6,40,20,54)(7,39,21,53)(8,38,22,52)(9,37,23,51)(10,36,24,50)(11,35,25,49)(12,34,26,48)(13,33,27,47)(14,32,28,46) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,45,15,31),(2,44,16,30),(3,43,17,29),(4,42,18,56),(5,41,19,55),(6,40,20,54),(7,39,21,53),(8,38,22,52),(9,37,23,51),(10,36,24,50),(11,35,25,49),(12,34,26,48),(13,33,27,47),(14,32,28,46)]])

Dic14 is a maximal subgroup of
C56⋊C2  Dic28  D4.D7  C7⋊Q16  C4○D28  D42D7  Q8×D7  C4.F7  C21⋊Q8  Dic42  C35⋊Q8  Dic70  Dic98  C722Q8  C724Q8
Dic14 is a maximal quotient of
Dic7⋊C4  C4⋊Dic7  C21⋊Q8  Dic42  C35⋊Q8  Dic70  Dic98  C722Q8  C724Q8

Matrix representation of Dic14 in GL2(𝔽29) generated by

716
135
,
170
1612
G:=sub<GL(2,GF(29))| [7,13,16,5],[17,16,0,12] >;

Dic14 in GAP, Magma, Sage, TeX

{\rm Dic}_{14}
% in TeX

G:=Group("Dic14");
// GroupNames label

G:=SmallGroup(56,3);
// by ID

G=gap.SmallGroup(56,3);
# by ID

G:=PCGroup([4,-2,-2,-2,-7,16,49,21,771]);
// Polycyclic

G:=Group<a,b|a^28=1,b^2=a^14,b*a*b^-1=a^-1>;
// generators/relations

Export

Subgroup lattice of Dic14 in TeX
Character table of Dic14 in TeX

׿
×
𝔽