Extensions 1→N→G→Q→1 with N=C2×C14 and Q=Dic3

Direct product G=N×Q with N=C2×C14 and Q=Dic3

Semidirect products G=N:Q with N=C2×C14 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
(C2×C14)⋊1Dic3 = C7×A4⋊C4φ: Dic3/C2S3 ⊆ Aut C2×C14843(C2xC14):1Dic3336,117
(C2×C14)⋊2Dic3 = A4⋊Dic7φ: Dic3/C2S3 ⊆ Aut C2×C14846-(C2xC14):2Dic3336,120
(C2×C14)⋊3Dic3 = C7×C6.D4φ: Dic3/C6C2 ⊆ Aut C2×C14168(C2xC14):3Dic3336,89
(C2×C14)⋊4Dic3 = C42.38D4φ: Dic3/C6C2 ⊆ Aut C2×C14168(C2xC14):4Dic3336,105
(C2×C14)⋊5Dic3 = C22×Dic21φ: Dic3/C6C2 ⊆ Aut C2×C14336(C2xC14):5Dic3336,202

Non-split extensions G=N.Q with N=C2×C14 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
(C2×C14).1Dic3 = C7×C4.Dic3φ: Dic3/C6C2 ⊆ Aut C2×C141682(C2xC14).1Dic3336,80
(C2×C14).2Dic3 = C2×C21⋊C8φ: Dic3/C6C2 ⊆ Aut C2×C14336(C2xC14).2Dic3336,95
(C2×C14).3Dic3 = C84.C4φ: Dic3/C6C2 ⊆ Aut C2×C141682(C2xC14).3Dic3336,96
(C2×C14).4Dic3 = C14×C3⋊C8central extension (φ=1)336(C2xC14).4Dic3336,79