Extensions 1→N→G→Q→1 with N=C18 and Q=C3⋊S3

Direct product G=N×Q with N=C18 and Q=C3⋊S3
dρLabelID
C18×C3⋊S3108C18xC3:S3324,143

Semidirect products G=N:Q with N=C18 and Q=C3⋊S3
extensionφ:Q→Aut NdρLabelID
C18⋊(C3⋊S3) = C2×C324D9φ: C3⋊S3/C32C2 ⊆ Aut C18162C18:(C3:S3)324,149

Non-split extensions G=N.Q with N=C18 and Q=C3⋊S3
extensionφ:Q→Aut NdρLabelID
C18.1(C3⋊S3) = C27⋊Dic3φ: C3⋊S3/C32C2 ⊆ Aut C18324C18.1(C3:S3)324,21
C18.2(C3⋊S3) = C2×C27⋊S3φ: C3⋊S3/C32C2 ⊆ Aut C18162C18.2(C3:S3)324,76
C18.3(C3⋊S3) = C325Dic9φ: C3⋊S3/C32C2 ⊆ Aut C18324C18.3(C3:S3)324,103
C18.4(C3⋊S3) = C9×C3⋊Dic3central extension (φ=1)108C18.4(C3:S3)324,97
C18.5(C3⋊S3) = He3.5C12central extension (φ=1)1083C18.5(C3:S3)324,102
C18.6(C3⋊S3) = C2×He3.4C6central extension (φ=1)543C18.6(C3:S3)324,148

׿
×
𝔽