Copied to
clipboard

G = C2×He3.4C6order 324 = 22·34

Direct product of C2 and He3.4C6

direct product, non-abelian, supersoluble, monomial

Aliases: C2×He3.4C6, (C3×C18)⋊8S3, (C3×C9)⋊12D6, C18.6(C3⋊S3), He3.4(C2×C6), C32.4(S3×C6), C9○He33C22, (C2×He3).13C6, He3⋊C2.4C6, C9.2(C2×C3⋊S3), C3.7(C6×C3⋊S3), C6.15(C3×C3⋊S3), (C3×C6).12(C3×S3), (C2×C9○He3)⋊2C2, (C2×He3⋊C2).2C3, SmallGroup(324,148)

Series: Derived Chief Lower central Upper central

C1C3He3 — C2×He3.4C6
C1C3C32He3C9○He3He3.4C6 — C2×He3.4C6
He3 — C2×He3.4C6
C1C18

Generators and relations for C2×He3.4C6
 G = < a,b,c,d,e | a2=b3=c3=d3=1, e6=c, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc-1, ebe-1=b-1, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 277 in 101 conjugacy classes, 32 normal (12 characteristic)
C1, C2, C2, C3, C3, C22, S3, C6, C6, C9, C9, C32, D6, C2×C6, C18, C18, C3×S3, C3×C6, C3×C9, He3, 3- 1+2, C2×C18, S3×C6, S3×C9, He3⋊C2, C3×C18, C2×He3, C2×3- 1+2, C9○He3, S3×C18, C2×He3⋊C2, He3.4C6, C2×C9○He3, C2×He3.4C6
Quotients: C1, C2, C3, C22, S3, C6, D6, C2×C6, C3×S3, C3⋊S3, S3×C6, C2×C3⋊S3, C3×C3⋊S3, C6×C3⋊S3, He3.4C6, C2×He3.4C6

Smallest permutation representation of C2×He3.4C6
On 54 points
Generators in S54
(1 10)(2 11)(3 12)(4 13)(5 14)(6 15)(7 16)(8 17)(9 18)(19 40)(20 41)(21 42)(22 43)(23 44)(24 45)(25 46)(26 47)(27 48)(28 49)(29 50)(30 51)(31 52)(32 53)(33 54)(34 37)(35 38)(36 39)
(1 52 22)(2 23 53)(3 54 24)(4 25 37)(5 38 26)(6 27 39)(7 40 28)(8 29 41)(9 42 30)(10 31 43)(11 44 32)(12 33 45)(13 46 34)(14 35 47)(15 48 36)(16 19 49)(17 50 20)(18 21 51)
(1 7 13)(2 8 14)(3 9 15)(4 10 16)(5 11 17)(6 12 18)(19 25 31)(20 26 32)(21 27 33)(22 28 34)(23 29 35)(24 30 36)(37 43 49)(38 44 50)(39 45 51)(40 46 52)(41 47 53)(42 48 54)
(19 25 31)(20 32 26)(21 27 33)(22 34 28)(23 29 35)(24 36 30)(37 49 43)(38 44 50)(39 51 45)(40 46 52)(41 53 47)(42 48 54)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)

G:=sub<Sym(54)| (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,51)(31,52)(32,53)(33,54)(34,37)(35,38)(36,39), (1,52,22)(2,23,53)(3,54,24)(4,25,37)(5,38,26)(6,27,39)(7,40,28)(8,29,41)(9,42,30)(10,31,43)(11,44,32)(12,33,45)(13,46,34)(14,35,47)(15,48,36)(16,19,49)(17,50,20)(18,21,51), (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)(19,25,31)(20,26,32)(21,27,33)(22,28,34)(23,29,35)(24,30,36)(37,43,49)(38,44,50)(39,45,51)(40,46,52)(41,47,53)(42,48,54), (19,25,31)(20,32,26)(21,27,33)(22,34,28)(23,29,35)(24,36,30)(37,49,43)(38,44,50)(39,51,45)(40,46,52)(41,53,47)(42,48,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)>;

G:=Group( (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,51)(31,52)(32,53)(33,54)(34,37)(35,38)(36,39), (1,52,22)(2,23,53)(3,54,24)(4,25,37)(5,38,26)(6,27,39)(7,40,28)(8,29,41)(9,42,30)(10,31,43)(11,44,32)(12,33,45)(13,46,34)(14,35,47)(15,48,36)(16,19,49)(17,50,20)(18,21,51), (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)(19,25,31)(20,26,32)(21,27,33)(22,28,34)(23,29,35)(24,30,36)(37,43,49)(38,44,50)(39,45,51)(40,46,52)(41,47,53)(42,48,54), (19,25,31)(20,32,26)(21,27,33)(22,34,28)(23,29,35)(24,36,30)(37,49,43)(38,44,50)(39,51,45)(40,46,52)(41,53,47)(42,48,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54) );

G=PermutationGroup([[(1,10),(2,11),(3,12),(4,13),(5,14),(6,15),(7,16),(8,17),(9,18),(19,40),(20,41),(21,42),(22,43),(23,44),(24,45),(25,46),(26,47),(27,48),(28,49),(29,50),(30,51),(31,52),(32,53),(33,54),(34,37),(35,38),(36,39)], [(1,52,22),(2,23,53),(3,54,24),(4,25,37),(5,38,26),(6,27,39),(7,40,28),(8,29,41),(9,42,30),(10,31,43),(11,44,32),(12,33,45),(13,46,34),(14,35,47),(15,48,36),(16,19,49),(17,50,20),(18,21,51)], [(1,7,13),(2,8,14),(3,9,15),(4,10,16),(5,11,17),(6,12,18),(19,25,31),(20,26,32),(21,27,33),(22,28,34),(23,29,35),(24,30,36),(37,43,49),(38,44,50),(39,45,51),(40,46,52),(41,47,53),(42,48,54)], [(19,25,31),(20,32,26),(21,27,33),(22,34,28),(23,29,35),(24,36,30),(37,49,43),(38,44,50),(39,51,45),(40,46,52),(41,53,47),(42,48,54)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)]])

60 conjugacy classes

class 1 2A2B2C3A3B3C3D3E3F6A6B6C6D6E6F6G6H6I6J9A···9F9G···9N18A···18F18G···18N18O···18Z
order122233333366666666669···99···918···1818···1818···18
size119911666611666699991···16···61···16···69···9

60 irreducible representations

dim111111222233
type+++++
imageC1C2C2C3C6C6S3D6C3×S3S3×C6He3.4C6C2×He3.4C6
kernelC2×He3.4C6He3.4C6C2×C9○He3C2×He3⋊C2He3⋊C2C2×He3C3×C18C3×C9C3×C6C32C2C1
# reps12124244881212

Matrix representation of C2×He3.4C6 in GL3(𝔽19) generated by

1800
0180
0018
,
1100
0181
0180
,
700
070
007
,
100
1110
1207
,
300
003
030
G:=sub<GL(3,GF(19))| [18,0,0,0,18,0,0,0,18],[1,0,0,10,18,18,0,1,0],[7,0,0,0,7,0,0,0,7],[1,1,12,0,11,0,0,0,7],[3,0,0,0,0,3,0,3,0] >;

C2×He3.4C6 in GAP, Magma, Sage, TeX

C_2\times {\rm He}_3._4C_6
% in TeX

G:=Group("C2xHe3.4C6");
// GroupNames label

G:=SmallGroup(324,148);
// by ID

G=gap.SmallGroup(324,148);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-3,-3,500,579,2164,382]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^3=1,e^6=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^-1,e*b*e^-1=b^-1,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽