Copied to
clipboard

G = C2×C27⋊S3order 324 = 22·34

Direct product of C2 and C27⋊S3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C2×C27⋊S3, C54⋊S3, C6⋊D27, C272D6, C32D54, C18.5D9, C9.2D18, C32.4D18, (C3×C54)⋊3C2, (C3×C9).9D6, (C3×C6).8D9, C6.4(C9⋊S3), (C3×C27)⋊4C22, C18.2(C3⋊S3), (C3×C18).23S3, C9.(C2×C3⋊S3), C3.2(C2×C9⋊S3), SmallGroup(324,76)

Series: Derived Chief Lower central Upper central

C1C3×C27 — C2×C27⋊S3
C1C3C9C3×C9C3×C27C27⋊S3 — C2×C27⋊S3
C3×C27 — C2×C27⋊S3
C1C2

Generators and relations for C2×C27⋊S3
 G = < a,b,c,d | a2=b27=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b-1, dcd=c-1 >

Subgroups: 742 in 70 conjugacy classes, 31 normal (13 characteristic)
C1, C2, C2, C3, C3, C22, S3, C6, C6, C9, C9, C32, D6, D9, C18, C18, C3⋊S3, C3×C6, C27, C3×C9, D18, C2×C3⋊S3, D27, C54, C9⋊S3, C3×C18, C3×C27, D54, C2×C9⋊S3, C27⋊S3, C3×C54, C2×C27⋊S3
Quotients: C1, C2, C22, S3, D6, D9, C3⋊S3, D18, C2×C3⋊S3, D27, C9⋊S3, D54, C2×C9⋊S3, C27⋊S3, C2×C27⋊S3

Smallest permutation representation of C2×C27⋊S3
On 162 points
Generators in S162
(1 72)(2 73)(3 74)(4 75)(5 76)(6 77)(7 78)(8 79)(9 80)(10 81)(11 55)(12 56)(13 57)(14 58)(15 59)(16 60)(17 61)(18 62)(19 63)(20 64)(21 65)(22 66)(23 67)(24 68)(25 69)(26 70)(27 71)(28 112)(29 113)(30 114)(31 115)(32 116)(33 117)(34 118)(35 119)(36 120)(37 121)(38 122)(39 123)(40 124)(41 125)(42 126)(43 127)(44 128)(45 129)(46 130)(47 131)(48 132)(49 133)(50 134)(51 135)(52 109)(53 110)(54 111)(82 161)(83 162)(84 136)(85 137)(86 138)(87 139)(88 140)(89 141)(90 142)(91 143)(92 144)(93 145)(94 146)(95 147)(96 148)(97 149)(98 150)(99 151)(100 152)(101 153)(102 154)(103 155)(104 156)(105 157)(106 158)(107 159)(108 160)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162)
(1 44 98)(2 45 99)(3 46 100)(4 47 101)(5 48 102)(6 49 103)(7 50 104)(8 51 105)(9 52 106)(10 53 107)(11 54 108)(12 28 82)(13 29 83)(14 30 84)(15 31 85)(16 32 86)(17 33 87)(18 34 88)(19 35 89)(20 36 90)(21 37 91)(22 38 92)(23 39 93)(24 40 94)(25 41 95)(26 42 96)(27 43 97)(55 111 160)(56 112 161)(57 113 162)(58 114 136)(59 115 137)(60 116 138)(61 117 139)(62 118 140)(63 119 141)(64 120 142)(65 121 143)(66 122 144)(67 123 145)(68 124 146)(69 125 147)(70 126 148)(71 127 149)(72 128 150)(73 129 151)(74 130 152)(75 131 153)(76 132 154)(77 133 155)(78 134 156)(79 135 157)(80 109 158)(81 110 159)
(1 72)(2 71)(3 70)(4 69)(5 68)(6 67)(7 66)(8 65)(9 64)(10 63)(11 62)(12 61)(13 60)(14 59)(15 58)(16 57)(17 56)(18 55)(19 81)(20 80)(21 79)(22 78)(23 77)(24 76)(25 75)(26 74)(27 73)(28 139)(29 138)(30 137)(31 136)(32 162)(33 161)(34 160)(35 159)(36 158)(37 157)(38 156)(39 155)(40 154)(41 153)(42 152)(43 151)(44 150)(45 149)(46 148)(47 147)(48 146)(49 145)(50 144)(51 143)(52 142)(53 141)(54 140)(82 117)(83 116)(84 115)(85 114)(86 113)(87 112)(88 111)(89 110)(90 109)(91 135)(92 134)(93 133)(94 132)(95 131)(96 130)(97 129)(98 128)(99 127)(100 126)(101 125)(102 124)(103 123)(104 122)(105 121)(106 120)(107 119)(108 118)

G:=sub<Sym(162)| (1,72)(2,73)(3,74)(4,75)(5,76)(6,77)(7,78)(8,79)(9,80)(10,81)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,71)(28,112)(29,113)(30,114)(31,115)(32,116)(33,117)(34,118)(35,119)(36,120)(37,121)(38,122)(39,123)(40,124)(41,125)(42,126)(43,127)(44,128)(45,129)(46,130)(47,131)(48,132)(49,133)(50,134)(51,135)(52,109)(53,110)(54,111)(82,161)(83,162)(84,136)(85,137)(86,138)(87,139)(88,140)(89,141)(90,142)(91,143)(92,144)(93,145)(94,146)(95,147)(96,148)(97,149)(98,150)(99,151)(100,152)(101,153)(102,154)(103,155)(104,156)(105,157)(106,158)(107,159)(108,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162), (1,44,98)(2,45,99)(3,46,100)(4,47,101)(5,48,102)(6,49,103)(7,50,104)(8,51,105)(9,52,106)(10,53,107)(11,54,108)(12,28,82)(13,29,83)(14,30,84)(15,31,85)(16,32,86)(17,33,87)(18,34,88)(19,35,89)(20,36,90)(21,37,91)(22,38,92)(23,39,93)(24,40,94)(25,41,95)(26,42,96)(27,43,97)(55,111,160)(56,112,161)(57,113,162)(58,114,136)(59,115,137)(60,116,138)(61,117,139)(62,118,140)(63,119,141)(64,120,142)(65,121,143)(66,122,144)(67,123,145)(68,124,146)(69,125,147)(70,126,148)(71,127,149)(72,128,150)(73,129,151)(74,130,152)(75,131,153)(76,132,154)(77,133,155)(78,134,156)(79,135,157)(80,109,158)(81,110,159), (1,72)(2,71)(3,70)(4,69)(5,68)(6,67)(7,66)(8,65)(9,64)(10,63)(11,62)(12,61)(13,60)(14,59)(15,58)(16,57)(17,56)(18,55)(19,81)(20,80)(21,79)(22,78)(23,77)(24,76)(25,75)(26,74)(27,73)(28,139)(29,138)(30,137)(31,136)(32,162)(33,161)(34,160)(35,159)(36,158)(37,157)(38,156)(39,155)(40,154)(41,153)(42,152)(43,151)(44,150)(45,149)(46,148)(47,147)(48,146)(49,145)(50,144)(51,143)(52,142)(53,141)(54,140)(82,117)(83,116)(84,115)(85,114)(86,113)(87,112)(88,111)(89,110)(90,109)(91,135)(92,134)(93,133)(94,132)(95,131)(96,130)(97,129)(98,128)(99,127)(100,126)(101,125)(102,124)(103,123)(104,122)(105,121)(106,120)(107,119)(108,118)>;

G:=Group( (1,72)(2,73)(3,74)(4,75)(5,76)(6,77)(7,78)(8,79)(9,80)(10,81)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,71)(28,112)(29,113)(30,114)(31,115)(32,116)(33,117)(34,118)(35,119)(36,120)(37,121)(38,122)(39,123)(40,124)(41,125)(42,126)(43,127)(44,128)(45,129)(46,130)(47,131)(48,132)(49,133)(50,134)(51,135)(52,109)(53,110)(54,111)(82,161)(83,162)(84,136)(85,137)(86,138)(87,139)(88,140)(89,141)(90,142)(91,143)(92,144)(93,145)(94,146)(95,147)(96,148)(97,149)(98,150)(99,151)(100,152)(101,153)(102,154)(103,155)(104,156)(105,157)(106,158)(107,159)(108,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162), (1,44,98)(2,45,99)(3,46,100)(4,47,101)(5,48,102)(6,49,103)(7,50,104)(8,51,105)(9,52,106)(10,53,107)(11,54,108)(12,28,82)(13,29,83)(14,30,84)(15,31,85)(16,32,86)(17,33,87)(18,34,88)(19,35,89)(20,36,90)(21,37,91)(22,38,92)(23,39,93)(24,40,94)(25,41,95)(26,42,96)(27,43,97)(55,111,160)(56,112,161)(57,113,162)(58,114,136)(59,115,137)(60,116,138)(61,117,139)(62,118,140)(63,119,141)(64,120,142)(65,121,143)(66,122,144)(67,123,145)(68,124,146)(69,125,147)(70,126,148)(71,127,149)(72,128,150)(73,129,151)(74,130,152)(75,131,153)(76,132,154)(77,133,155)(78,134,156)(79,135,157)(80,109,158)(81,110,159), (1,72)(2,71)(3,70)(4,69)(5,68)(6,67)(7,66)(8,65)(9,64)(10,63)(11,62)(12,61)(13,60)(14,59)(15,58)(16,57)(17,56)(18,55)(19,81)(20,80)(21,79)(22,78)(23,77)(24,76)(25,75)(26,74)(27,73)(28,139)(29,138)(30,137)(31,136)(32,162)(33,161)(34,160)(35,159)(36,158)(37,157)(38,156)(39,155)(40,154)(41,153)(42,152)(43,151)(44,150)(45,149)(46,148)(47,147)(48,146)(49,145)(50,144)(51,143)(52,142)(53,141)(54,140)(82,117)(83,116)(84,115)(85,114)(86,113)(87,112)(88,111)(89,110)(90,109)(91,135)(92,134)(93,133)(94,132)(95,131)(96,130)(97,129)(98,128)(99,127)(100,126)(101,125)(102,124)(103,123)(104,122)(105,121)(106,120)(107,119)(108,118) );

G=PermutationGroup([[(1,72),(2,73),(3,74),(4,75),(5,76),(6,77),(7,78),(8,79),(9,80),(10,81),(11,55),(12,56),(13,57),(14,58),(15,59),(16,60),(17,61),(18,62),(19,63),(20,64),(21,65),(22,66),(23,67),(24,68),(25,69),(26,70),(27,71),(28,112),(29,113),(30,114),(31,115),(32,116),(33,117),(34,118),(35,119),(36,120),(37,121),(38,122),(39,123),(40,124),(41,125),(42,126),(43,127),(44,128),(45,129),(46,130),(47,131),(48,132),(49,133),(50,134),(51,135),(52,109),(53,110),(54,111),(82,161),(83,162),(84,136),(85,137),(86,138),(87,139),(88,140),(89,141),(90,142),(91,143),(92,144),(93,145),(94,146),(95,147),(96,148),(97,149),(98,150),(99,151),(100,152),(101,153),(102,154),(103,155),(104,156),(105,157),(106,158),(107,159),(108,160)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162)], [(1,44,98),(2,45,99),(3,46,100),(4,47,101),(5,48,102),(6,49,103),(7,50,104),(8,51,105),(9,52,106),(10,53,107),(11,54,108),(12,28,82),(13,29,83),(14,30,84),(15,31,85),(16,32,86),(17,33,87),(18,34,88),(19,35,89),(20,36,90),(21,37,91),(22,38,92),(23,39,93),(24,40,94),(25,41,95),(26,42,96),(27,43,97),(55,111,160),(56,112,161),(57,113,162),(58,114,136),(59,115,137),(60,116,138),(61,117,139),(62,118,140),(63,119,141),(64,120,142),(65,121,143),(66,122,144),(67,123,145),(68,124,146),(69,125,147),(70,126,148),(71,127,149),(72,128,150),(73,129,151),(74,130,152),(75,131,153),(76,132,154),(77,133,155),(78,134,156),(79,135,157),(80,109,158),(81,110,159)], [(1,72),(2,71),(3,70),(4,69),(5,68),(6,67),(7,66),(8,65),(9,64),(10,63),(11,62),(12,61),(13,60),(14,59),(15,58),(16,57),(17,56),(18,55),(19,81),(20,80),(21,79),(22,78),(23,77),(24,76),(25,75),(26,74),(27,73),(28,139),(29,138),(30,137),(31,136),(32,162),(33,161),(34,160),(35,159),(36,158),(37,157),(38,156),(39,155),(40,154),(41,153),(42,152),(43,151),(44,150),(45,149),(46,148),(47,147),(48,146),(49,145),(50,144),(51,143),(52,142),(53,141),(54,140),(82,117),(83,116),(84,115),(85,114),(86,113),(87,112),(88,111),(89,110),(90,109),(91,135),(92,134),(93,133),(94,132),(95,131),(96,130),(97,129),(98,128),(99,127),(100,126),(101,125),(102,124),(103,123),(104,122),(105,121),(106,120),(107,119),(108,118)]])

84 conjugacy classes

class 1 2A2B2C3A3B3C3D6A6B6C6D9A···9I18A···18I27A···27AA54A···54AA
order1222333366669···918···1827···2754···54
size118181222222222···22···22···22···2

84 irreducible representations

dim1112222222222
type+++++++++++++
imageC1C2C2S3S3D6D6D9D9D18D18D27D54
kernelC2×C27⋊S3C27⋊S3C3×C54C54C3×C18C27C3×C9C18C3×C6C9C32C6C3
# reps121313163632727

Matrix representation of C2×C27⋊S3 in GL4(𝔽109) generated by

1000
0100
001080
000108
,
71700
929900
001646
006379
,
0100
10810800
0010
0001
,
1000
10810800
003282
005077
G:=sub<GL(4,GF(109))| [1,0,0,0,0,1,0,0,0,0,108,0,0,0,0,108],[7,92,0,0,17,99,0,0,0,0,16,63,0,0,46,79],[0,108,0,0,1,108,0,0,0,0,1,0,0,0,0,1],[1,108,0,0,0,108,0,0,0,0,32,50,0,0,82,77] >;

C2×C27⋊S3 in GAP, Magma, Sage, TeX

C_2\times C_{27}\rtimes S_3
% in TeX

G:=Group("C2xC27:S3");
// GroupNames label

G:=SmallGroup(324,76);
// by ID

G=gap.SmallGroup(324,76);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-3,-3,794,824,579,5404,208,7781]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^27=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽