Extensions 1→N→G→Q→1 with N=C2×C4 and Q=C3×D7

Direct product G=N×Q with N=C2×C4 and Q=C3×D7
dρLabelID
D7×C2×C12168D7xC2xC12336,175

Semidirect products G=N:Q with N=C2×C4 and Q=C3×D7
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊1(C3×D7) = C3×D14⋊C4φ: C3×D7/C21C2 ⊆ Aut C2×C4168(C2xC4):1(C3xD7)336,68
(C2×C4)⋊2(C3×D7) = C6×D28φ: C3×D7/C21C2 ⊆ Aut C2×C4168(C2xC4):2(C3xD7)336,176
(C2×C4)⋊3(C3×D7) = C3×C4○D28φ: C3×D7/C21C2 ⊆ Aut C2×C41682(C2xC4):3(C3xD7)336,177

Non-split extensions G=N.Q with N=C2×C4 and Q=C3×D7
extensionφ:Q→Aut NdρLabelID
(C2×C4).1(C3×D7) = C3×Dic7⋊C4φ: C3×D7/C21C2 ⊆ Aut C2×C4336(C2xC4).1(C3xD7)336,66
(C2×C4).2(C3×D7) = C3×C4.Dic7φ: C3×D7/C21C2 ⊆ Aut C2×C41682(C2xC4).2(C3xD7)336,64
(C2×C4).3(C3×D7) = C3×C4⋊Dic7φ: C3×D7/C21C2 ⊆ Aut C2×C4336(C2xC4).3(C3xD7)336,67
(C2×C4).4(C3×D7) = C6×Dic14φ: C3×D7/C21C2 ⊆ Aut C2×C4336(C2xC4).4(C3xD7)336,174
(C2×C4).5(C3×D7) = C6×C7⋊C8central extension (φ=1)336(C2xC4).5(C3xD7)336,63
(C2×C4).6(C3×D7) = C12×Dic7central extension (φ=1)336(C2xC4).6(C3xD7)336,65

׿
×
𝔽