direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: C3×D7, C7⋊3C6, C21⋊2C2, SmallGroup(42,4)
Series: Derived ►Chief ►Lower central ►Upper central
C7 — C3×D7 |
Generators and relations for C3×D7
G = < a,b,c | a3=b7=c2=1, ab=ba, ac=ca, cbc=b-1 >
Character table of C3×D7
class | 1 | 2 | 3A | 3B | 6A | 6B | 7A | 7B | 7C | 21A | 21B | 21C | 21D | 21E | 21F | |
size | 1 | 7 | 1 | 1 | 7 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | linear of order 3 |
ρ4 | 1 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | linear of order 6 |
ρ5 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | linear of order 3 |
ρ6 | 1 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | linear of order 6 |
ρ7 | 2 | 0 | 2 | 2 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | orthogonal lifted from D7 |
ρ8 | 2 | 0 | 2 | 2 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | orthogonal lifted from D7 |
ρ9 | 2 | 0 | 2 | 2 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | orthogonal lifted from D7 |
ρ10 | 2 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ3ζ75+ζ3ζ72 | ζ32ζ75+ζ32ζ72 | ζ32ζ74+ζ32ζ73 | ζ3ζ74+ζ3ζ73 | ζ32ζ76+ζ32ζ7 | ζ3ζ76+ζ3ζ7 | complex faithful |
ρ11 | 2 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ32ζ74+ζ32ζ73 | ζ3ζ74+ζ3ζ73 | ζ3ζ76+ζ3ζ7 | ζ32ζ76+ζ32ζ7 | ζ3ζ75+ζ3ζ72 | ζ32ζ75+ζ32ζ72 | complex faithful |
ρ12 | 2 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ3ζ76+ζ3ζ7 | ζ32ζ76+ζ32ζ7 | ζ32ζ75+ζ32ζ72 | ζ3ζ75+ζ3ζ72 | ζ32ζ74+ζ32ζ73 | ζ3ζ74+ζ3ζ73 | complex faithful |
ρ13 | 2 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ32ζ75+ζ32ζ72 | ζ3ζ75+ζ3ζ72 | ζ3ζ74+ζ3ζ73 | ζ32ζ74+ζ32ζ73 | ζ3ζ76+ζ3ζ7 | ζ32ζ76+ζ32ζ7 | complex faithful |
ρ14 | 2 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ32ζ76+ζ32ζ7 | ζ3ζ76+ζ3ζ7 | ζ3ζ75+ζ3ζ72 | ζ32ζ75+ζ32ζ72 | ζ3ζ74+ζ3ζ73 | ζ32ζ74+ζ32ζ73 | complex faithful |
ρ15 | 2 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ3ζ74+ζ3ζ73 | ζ32ζ74+ζ32ζ73 | ζ32ζ76+ζ32ζ7 | ζ3ζ76+ζ3ζ7 | ζ32ζ75+ζ32ζ72 | ζ3ζ75+ζ3ζ72 | complex faithful |
(1 20 13)(2 21 14)(3 15 8)(4 16 9)(5 17 10)(6 18 11)(7 19 12)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)
(1 7)(2 6)(3 5)(8 10)(11 14)(12 13)(15 17)(18 21)(19 20)
G:=sub<Sym(21)| (1,20,13)(2,21,14)(3,15,8)(4,16,9)(5,17,10)(6,18,11)(7,19,12), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)>;
G:=Group( (1,20,13)(2,21,14)(3,15,8)(4,16,9)(5,17,10)(6,18,11)(7,19,12), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20) );
G=PermutationGroup([[(1,20,13),(2,21,14),(3,15,8),(4,16,9),(5,17,10),(6,18,11),(7,19,12)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21)], [(1,7),(2,6),(3,5),(8,10),(11,14),(12,13),(15,17),(18,21),(19,20)]])
G:=TransitiveGroup(21,3);
C3×D7 is a maximal subgroup of
C7⋊C18 C7⋊5F7
C3×D7 is a maximal quotient of C7⋊5F7
Matrix representation of C3×D7 ►in GL2(𝔽13) generated by
3 | 0 |
0 | 3 |
9 | 8 |
2 | 12 |
12 | 0 |
11 | 1 |
G:=sub<GL(2,GF(13))| [3,0,0,3],[9,2,8,12],[12,11,0,1] >;
C3×D7 in GAP, Magma, Sage, TeX
C_3\times D_7
% in TeX
G:=Group("C3xD7");
// GroupNames label
G:=SmallGroup(42,4);
// by ID
G=gap.SmallGroup(42,4);
# by ID
G:=PCGroup([3,-2,-3,-7,326]);
// Polycyclic
G:=Group<a,b,c|a^3=b^7=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export
Subgroup lattice of C3×D7 in TeX
Character table of C3×D7 in TeX