Extensions 1→N→G→Q→1 with N=C84 and Q=C4

Direct product G=N×Q with N=C84 and Q=C4
dρLabelID
C4×C84336C4xC84336,106

Semidirect products G=N:Q with N=C84 and Q=C4
extensionφ:Q→Aut NdρLabelID
C841C4 = C84⋊C4φ: C4/C2C2 ⊆ Aut C84336C84:1C4336,99
C842C4 = C4×Dic21φ: C4/C2C2 ⊆ Aut C84336C84:2C4336,97
C843C4 = C3×C4⋊Dic7φ: C4/C2C2 ⊆ Aut C84336C84:3C4336,67
C844C4 = C12×Dic7φ: C4/C2C2 ⊆ Aut C84336C84:4C4336,65
C845C4 = C7×C4⋊Dic3φ: C4/C2C2 ⊆ Aut C84336C84:5C4336,83
C846C4 = Dic3×C28φ: C4/C2C2 ⊆ Aut C84336C84:6C4336,81
C847C4 = C4⋊C4×C21φ: C4/C2C2 ⊆ Aut C84336C84:7C4336,108

Non-split extensions G=N.Q with N=C84 and Q=C4
extensionφ:Q→Aut NdρLabelID
C84.1C4 = C84.C4φ: C4/C2C2 ⊆ Aut C841682C84.1C4336,96
C84.2C4 = C21⋊C16φ: C4/C2C2 ⊆ Aut C843362C84.2C4336,5
C84.3C4 = C2×C21⋊C8φ: C4/C2C2 ⊆ Aut C84336C84.3C4336,95
C84.4C4 = C3×C4.Dic7φ: C4/C2C2 ⊆ Aut C841682C84.4C4336,64
C84.5C4 = C3×C7⋊C16φ: C4/C2C2 ⊆ Aut C843362C84.5C4336,4
C84.6C4 = C6×C7⋊C8φ: C4/C2C2 ⊆ Aut C84336C84.6C4336,63
C84.7C4 = C7×C4.Dic3φ: C4/C2C2 ⊆ Aut C841682C84.7C4336,80
C84.8C4 = C7×C3⋊C16φ: C4/C2C2 ⊆ Aut C843362C84.8C4336,3
C84.9C4 = C14×C3⋊C8φ: C4/C2C2 ⊆ Aut C84336C84.9C4336,79
C84.10C4 = M4(2)×C21φ: C4/C2C2 ⊆ Aut C841682C84.10C4336,110

׿
×
𝔽