Extensions 1→N→G→Q→1 with N=C2×Dic3 and Q=D7

Direct product G=N×Q with N=C2×Dic3 and Q=D7

Semidirect products G=N:Q with N=C2×Dic3 and Q=D7
extensionφ:Q→Out NdρLabelID
(C2×Dic3)⋊1D7 = D14⋊Dic3φ: D7/C7C2 ⊆ Out C2×Dic3168(C2xDic3):1D7336,42
(C2×Dic3)⋊2D7 = D42⋊C4φ: D7/C7C2 ⊆ Out C2×Dic3168(C2xDic3):2D7336,44
(C2×Dic3)⋊3D7 = Dic7.D6φ: D7/C7C2 ⊆ Out C2×Dic31684(C2xDic3):3D7336,152
(C2×Dic3)⋊4D7 = C2×C3⋊D28φ: D7/C7C2 ⊆ Out C2×Dic3168(C2xDic3):4D7336,158
(C2×Dic3)⋊5D7 = C2×D21⋊C4φ: trivial image168(C2xDic3):5D7336,156

Non-split extensions G=N.Q with N=C2×Dic3 and Q=D7
extensionφ:Q→Out NdρLabelID
(C2×Dic3).1D7 = C42.Q8φ: D7/C7C2 ⊆ Out C2×Dic3336(C2xDic3).1D7336,45
(C2×Dic3).2D7 = Dic21⋊C4φ: D7/C7C2 ⊆ Out C2×Dic3336(C2xDic3).2D7336,46
(C2×Dic3).3D7 = C14.Dic6φ: D7/C7C2 ⊆ Out C2×Dic3336(C2xDic3).3D7336,47
(C2×Dic3).4D7 = C2×C21⋊Q8φ: D7/C7C2 ⊆ Out C2×Dic3336(C2xDic3).4D7336,160
(C2×Dic3).5D7 = Dic3×Dic7φ: trivial image336(C2xDic3).5D7336,41