Copied to
clipboard

G = C2×C3⋊D28order 336 = 24·3·7

Direct product of C2 and C3⋊D28

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C3⋊D28, C62D28, C422D4, D146D6, Dic34D14, D428C22, C42.22C23, C215(C2×D4), C33(C2×D28), C141(C3⋊D4), (C2×Dic3)⋊4D7, (C2×C14).17D6, (C2×C6).17D14, (C6×D7)⋊6C22, (C22×D7)⋊3S3, (Dic3×C14)⋊6C2, (C22×D21)⋊4C2, C22.15(S3×D7), C6.22(C22×D7), C14.22(C22×S3), (C2×C42).16C22, (C7×Dic3)⋊7C22, (C2×C6×D7)⋊2C2, C71(C2×C3⋊D4), C2.22(C2×S3×D7), SmallGroup(336,158)

Series: Derived Chief Lower central Upper central

C1C42 — C2×C3⋊D28
C1C7C21C42C6×D7C3⋊D28 — C2×C3⋊D28
C21C42 — C2×C3⋊D28
C1C22

Generators and relations for C2×C3⋊D28
 G = < a,b,c,d | a2=b3=c28=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 732 in 108 conjugacy classes, 40 normal (18 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C6, C6, C7, C2×C4, D4, C23, Dic3, D6, C2×C6, C2×C6, D7, C14, C14, C2×D4, C21, C2×Dic3, C3⋊D4, C22×S3, C22×C6, C28, D14, D14, C2×C14, C3×D7, D21, C42, C42, C2×C3⋊D4, D28, C2×C28, C22×D7, C22×D7, C7×Dic3, C6×D7, C6×D7, D42, D42, C2×C42, C2×D28, C3⋊D28, Dic3×C14, C2×C6×D7, C22×D21, C2×C3⋊D28
Quotients: C1, C2, C22, S3, D4, C23, D6, D7, C2×D4, C3⋊D4, C22×S3, D14, C2×C3⋊D4, D28, C22×D7, S3×D7, C2×D28, C3⋊D28, C2×S3×D7, C2×C3⋊D28

Smallest permutation representation of C2×C3⋊D28
On 168 points
Generators in S168
(1 144)(2 145)(3 146)(4 147)(5 148)(6 149)(7 150)(8 151)(9 152)(10 153)(11 154)(12 155)(13 156)(14 157)(15 158)(16 159)(17 160)(18 161)(19 162)(20 163)(21 164)(22 165)(23 166)(24 167)(25 168)(26 141)(27 142)(28 143)(29 77)(30 78)(31 79)(32 80)(33 81)(34 82)(35 83)(36 84)(37 57)(38 58)(39 59)(40 60)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(85 120)(86 121)(87 122)(88 123)(89 124)(90 125)(91 126)(92 127)(93 128)(94 129)(95 130)(96 131)(97 132)(98 133)(99 134)(100 135)(101 136)(102 137)(103 138)(104 139)(105 140)(106 113)(107 114)(108 115)(109 116)(110 117)(111 118)(112 119)
(1 111 81)(2 82 112)(3 85 83)(4 84 86)(5 87 57)(6 58 88)(7 89 59)(8 60 90)(9 91 61)(10 62 92)(11 93 63)(12 64 94)(13 95 65)(14 66 96)(15 97 67)(16 68 98)(17 99 69)(18 70 100)(19 101 71)(20 72 102)(21 103 73)(22 74 104)(23 105 75)(24 76 106)(25 107 77)(26 78 108)(27 109 79)(28 80 110)(29 168 114)(30 115 141)(31 142 116)(32 117 143)(33 144 118)(34 119 145)(35 146 120)(36 121 147)(37 148 122)(38 123 149)(39 150 124)(40 125 151)(41 152 126)(42 127 153)(43 154 128)(44 129 155)(45 156 130)(46 131 157)(47 158 132)(48 133 159)(49 160 134)(50 135 161)(51 162 136)(52 137 163)(53 164 138)(54 139 165)(55 166 140)(56 113 167)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 7)(2 6)(3 5)(8 28)(9 27)(10 26)(11 25)(12 24)(13 23)(14 22)(15 21)(16 20)(17 19)(29 128)(30 127)(31 126)(32 125)(33 124)(34 123)(35 122)(36 121)(37 120)(38 119)(39 118)(40 117)(41 116)(42 115)(43 114)(44 113)(45 140)(46 139)(47 138)(48 137)(49 136)(50 135)(51 134)(52 133)(53 132)(54 131)(55 130)(56 129)(57 85)(58 112)(59 111)(60 110)(61 109)(62 108)(63 107)(64 106)(65 105)(66 104)(67 103)(68 102)(69 101)(70 100)(71 99)(72 98)(73 97)(74 96)(75 95)(76 94)(77 93)(78 92)(79 91)(80 90)(81 89)(82 88)(83 87)(84 86)(141 153)(142 152)(143 151)(144 150)(145 149)(146 148)(154 168)(155 167)(156 166)(157 165)(158 164)(159 163)(160 162)

G:=sub<Sym(168)| (1,144)(2,145)(3,146)(4,147)(5,148)(6,149)(7,150)(8,151)(9,152)(10,153)(11,154)(12,155)(13,156)(14,157)(15,158)(16,159)(17,160)(18,161)(19,162)(20,163)(21,164)(22,165)(23,166)(24,167)(25,168)(26,141)(27,142)(28,143)(29,77)(30,78)(31,79)(32,80)(33,81)(34,82)(35,83)(36,84)(37,57)(38,58)(39,59)(40,60)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(85,120)(86,121)(87,122)(88,123)(89,124)(90,125)(91,126)(92,127)(93,128)(94,129)(95,130)(96,131)(97,132)(98,133)(99,134)(100,135)(101,136)(102,137)(103,138)(104,139)(105,140)(106,113)(107,114)(108,115)(109,116)(110,117)(111,118)(112,119), (1,111,81)(2,82,112)(3,85,83)(4,84,86)(5,87,57)(6,58,88)(7,89,59)(8,60,90)(9,91,61)(10,62,92)(11,93,63)(12,64,94)(13,95,65)(14,66,96)(15,97,67)(16,68,98)(17,99,69)(18,70,100)(19,101,71)(20,72,102)(21,103,73)(22,74,104)(23,105,75)(24,76,106)(25,107,77)(26,78,108)(27,109,79)(28,80,110)(29,168,114)(30,115,141)(31,142,116)(32,117,143)(33,144,118)(34,119,145)(35,146,120)(36,121,147)(37,148,122)(38,123,149)(39,150,124)(40,125,151)(41,152,126)(42,127,153)(43,154,128)(44,129,155)(45,156,130)(46,131,157)(47,158,132)(48,133,159)(49,160,134)(50,135,161)(51,162,136)(52,137,163)(53,164,138)(54,139,165)(55,166,140)(56,113,167), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(29,128)(30,127)(31,126)(32,125)(33,124)(34,123)(35,122)(36,121)(37,120)(38,119)(39,118)(40,117)(41,116)(42,115)(43,114)(44,113)(45,140)(46,139)(47,138)(48,137)(49,136)(50,135)(51,134)(52,133)(53,132)(54,131)(55,130)(56,129)(57,85)(58,112)(59,111)(60,110)(61,109)(62,108)(63,107)(64,106)(65,105)(66,104)(67,103)(68,102)(69,101)(70,100)(71,99)(72,98)(73,97)(74,96)(75,95)(76,94)(77,93)(78,92)(79,91)(80,90)(81,89)(82,88)(83,87)(84,86)(141,153)(142,152)(143,151)(144,150)(145,149)(146,148)(154,168)(155,167)(156,166)(157,165)(158,164)(159,163)(160,162)>;

G:=Group( (1,144)(2,145)(3,146)(4,147)(5,148)(6,149)(7,150)(8,151)(9,152)(10,153)(11,154)(12,155)(13,156)(14,157)(15,158)(16,159)(17,160)(18,161)(19,162)(20,163)(21,164)(22,165)(23,166)(24,167)(25,168)(26,141)(27,142)(28,143)(29,77)(30,78)(31,79)(32,80)(33,81)(34,82)(35,83)(36,84)(37,57)(38,58)(39,59)(40,60)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(85,120)(86,121)(87,122)(88,123)(89,124)(90,125)(91,126)(92,127)(93,128)(94,129)(95,130)(96,131)(97,132)(98,133)(99,134)(100,135)(101,136)(102,137)(103,138)(104,139)(105,140)(106,113)(107,114)(108,115)(109,116)(110,117)(111,118)(112,119), (1,111,81)(2,82,112)(3,85,83)(4,84,86)(5,87,57)(6,58,88)(7,89,59)(8,60,90)(9,91,61)(10,62,92)(11,93,63)(12,64,94)(13,95,65)(14,66,96)(15,97,67)(16,68,98)(17,99,69)(18,70,100)(19,101,71)(20,72,102)(21,103,73)(22,74,104)(23,105,75)(24,76,106)(25,107,77)(26,78,108)(27,109,79)(28,80,110)(29,168,114)(30,115,141)(31,142,116)(32,117,143)(33,144,118)(34,119,145)(35,146,120)(36,121,147)(37,148,122)(38,123,149)(39,150,124)(40,125,151)(41,152,126)(42,127,153)(43,154,128)(44,129,155)(45,156,130)(46,131,157)(47,158,132)(48,133,159)(49,160,134)(50,135,161)(51,162,136)(52,137,163)(53,164,138)(54,139,165)(55,166,140)(56,113,167), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(29,128)(30,127)(31,126)(32,125)(33,124)(34,123)(35,122)(36,121)(37,120)(38,119)(39,118)(40,117)(41,116)(42,115)(43,114)(44,113)(45,140)(46,139)(47,138)(48,137)(49,136)(50,135)(51,134)(52,133)(53,132)(54,131)(55,130)(56,129)(57,85)(58,112)(59,111)(60,110)(61,109)(62,108)(63,107)(64,106)(65,105)(66,104)(67,103)(68,102)(69,101)(70,100)(71,99)(72,98)(73,97)(74,96)(75,95)(76,94)(77,93)(78,92)(79,91)(80,90)(81,89)(82,88)(83,87)(84,86)(141,153)(142,152)(143,151)(144,150)(145,149)(146,148)(154,168)(155,167)(156,166)(157,165)(158,164)(159,163)(160,162) );

G=PermutationGroup([[(1,144),(2,145),(3,146),(4,147),(5,148),(6,149),(7,150),(8,151),(9,152),(10,153),(11,154),(12,155),(13,156),(14,157),(15,158),(16,159),(17,160),(18,161),(19,162),(20,163),(21,164),(22,165),(23,166),(24,167),(25,168),(26,141),(27,142),(28,143),(29,77),(30,78),(31,79),(32,80),(33,81),(34,82),(35,83),(36,84),(37,57),(38,58),(39,59),(40,60),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(85,120),(86,121),(87,122),(88,123),(89,124),(90,125),(91,126),(92,127),(93,128),(94,129),(95,130),(96,131),(97,132),(98,133),(99,134),(100,135),(101,136),(102,137),(103,138),(104,139),(105,140),(106,113),(107,114),(108,115),(109,116),(110,117),(111,118),(112,119)], [(1,111,81),(2,82,112),(3,85,83),(4,84,86),(5,87,57),(6,58,88),(7,89,59),(8,60,90),(9,91,61),(10,62,92),(11,93,63),(12,64,94),(13,95,65),(14,66,96),(15,97,67),(16,68,98),(17,99,69),(18,70,100),(19,101,71),(20,72,102),(21,103,73),(22,74,104),(23,105,75),(24,76,106),(25,107,77),(26,78,108),(27,109,79),(28,80,110),(29,168,114),(30,115,141),(31,142,116),(32,117,143),(33,144,118),(34,119,145),(35,146,120),(36,121,147),(37,148,122),(38,123,149),(39,150,124),(40,125,151),(41,152,126),(42,127,153),(43,154,128),(44,129,155),(45,156,130),(46,131,157),(47,158,132),(48,133,159),(49,160,134),(50,135,161),(51,162,136),(52,137,163),(53,164,138),(54,139,165),(55,166,140),(56,113,167)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,7),(2,6),(3,5),(8,28),(9,27),(10,26),(11,25),(12,24),(13,23),(14,22),(15,21),(16,20),(17,19),(29,128),(30,127),(31,126),(32,125),(33,124),(34,123),(35,122),(36,121),(37,120),(38,119),(39,118),(40,117),(41,116),(42,115),(43,114),(44,113),(45,140),(46,139),(47,138),(48,137),(49,136),(50,135),(51,134),(52,133),(53,132),(54,131),(55,130),(56,129),(57,85),(58,112),(59,111),(60,110),(61,109),(62,108),(63,107),(64,106),(65,105),(66,104),(67,103),(68,102),(69,101),(70,100),(71,99),(72,98),(73,97),(74,96),(75,95),(76,94),(77,93),(78,92),(79,91),(80,90),(81,89),(82,88),(83,87),(84,86),(141,153),(142,152),(143,151),(144,150),(145,149),(146,148),(154,168),(155,167),(156,166),(157,165),(158,164),(159,163),(160,162)]])

54 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B6A6B6C6D6E6F6G7A7B7C14A···14I21A21B21C28A···28L42A···42I
order12222222344666666677714···1421212128···2842···42
size111114144242266222141414142222···24446···64···4

54 irreducible representations

dim11111222222222444
type++++++++++++++++
imageC1C2C2C2C2S3D4D6D6D7C3⋊D4D14D14D28S3×D7C3⋊D28C2×S3×D7
kernelC2×C3⋊D28C3⋊D28Dic3×C14C2×C6×D7C22×D21C22×D7C42D14C2×C14C2×Dic3C14Dic3C2×C6C6C22C2C2
# reps141111221346312363

Matrix representation of C2×C3⋊D28 in GL4(𝔽337) generated by

1000
0100
003360
000336
,
1000
0100
003361
003360
,
27521900
2284800
000336
003360
,
336000
178100
0001
0010
G:=sub<GL(4,GF(337))| [1,0,0,0,0,1,0,0,0,0,336,0,0,0,0,336],[1,0,0,0,0,1,0,0,0,0,336,336,0,0,1,0],[275,228,0,0,219,48,0,0,0,0,0,336,0,0,336,0],[336,178,0,0,0,1,0,0,0,0,0,1,0,0,1,0] >;

C2×C3⋊D28 in GAP, Magma, Sage, TeX

C_2\times C_3\rtimes D_{28}
% in TeX

G:=Group("C2xC3:D28");
// GroupNames label

G:=SmallGroup(336,158);
// by ID

G=gap.SmallGroup(336,158);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-7,121,55,490,10373]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^3=c^28=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽