Copied to
clipboard

G = C2×D21⋊C4order 336 = 24·3·7

Direct product of C2 and D21⋊C4

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×D21⋊C4, D423C4, Dic76D6, Dic36D14, C42.20C23, D42.14C22, C61(C4×D7), C141(C4×S3), C423(C2×C4), D212(C2×C4), C214(C22×C4), (C6×Dic7)⋊5C2, (C2×Dic3)⋊5D7, (C2×Dic7)⋊5S3, (C2×C6).15D14, (C2×C14).15D6, (Dic3×C14)⋊5C2, C6.20(C22×D7), C22.13(S3×D7), (C2×C42).14C22, C14.20(C22×S3), (C7×Dic3)⋊6C22, (C3×Dic7)⋊6C22, (C22×D21).3C2, C72(S3×C2×C4), C32(C2×C4×D7), C2.4(C2×S3×D7), SmallGroup(336,156)

Series: Derived Chief Lower central Upper central

C1C21 — C2×D21⋊C4
C1C7C21C42C3×Dic7D21⋊C4 — C2×D21⋊C4
C21 — C2×D21⋊C4
C1C22

Generators and relations for C2×D21⋊C4
 G = < a,b,c,d | a2=b21=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b-1, dbd-1=b8, dcd-1=b7c >

Subgroups: 604 in 108 conjugacy classes, 48 normal (18 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C6, C7, C2×C4, C23, Dic3, C12, D6, C2×C6, D7, C14, C14, C22×C4, C21, C4×S3, C2×Dic3, C2×C12, C22×S3, Dic7, C28, D14, C2×C14, D21, C42, C42, S3×C2×C4, C4×D7, C2×Dic7, C2×C28, C22×D7, C7×Dic3, C3×Dic7, D42, C2×C42, C2×C4×D7, D21⋊C4, C6×Dic7, Dic3×C14, C22×D21, C2×D21⋊C4
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, D7, C22×C4, C4×S3, C22×S3, D14, S3×C2×C4, C4×D7, C22×D7, S3×D7, C2×C4×D7, D21⋊C4, C2×S3×D7, C2×D21⋊C4

Smallest permutation representation of C2×D21⋊C4
On 168 points
Generators in S168
(1 60)(2 61)(3 62)(4 63)(5 43)(6 44)(7 45)(8 46)(9 47)(10 48)(11 49)(12 50)(13 51)(14 52)(15 53)(16 54)(17 55)(18 56)(19 57)(20 58)(21 59)(22 64)(23 65)(24 66)(25 67)(26 68)(27 69)(28 70)(29 71)(30 72)(31 73)(32 74)(33 75)(34 76)(35 77)(36 78)(37 79)(38 80)(39 81)(40 82)(41 83)(42 84)(85 128)(86 129)(87 130)(88 131)(89 132)(90 133)(91 134)(92 135)(93 136)(94 137)(95 138)(96 139)(97 140)(98 141)(99 142)(100 143)(101 144)(102 145)(103 146)(104 147)(105 127)(106 160)(107 161)(108 162)(109 163)(110 164)(111 165)(112 166)(113 167)(114 168)(115 148)(116 149)(117 150)(118 151)(119 152)(120 153)(121 154)(122 155)(123 156)(124 157)(125 158)(126 159)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147)(148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 74)(2 73)(3 72)(4 71)(5 70)(6 69)(7 68)(8 67)(9 66)(10 65)(11 64)(12 84)(13 83)(14 82)(15 81)(16 80)(17 79)(18 78)(19 77)(20 76)(21 75)(22 49)(23 48)(24 47)(25 46)(26 45)(27 44)(28 43)(29 63)(30 62)(31 61)(32 60)(33 59)(34 58)(35 57)(36 56)(37 55)(38 54)(39 53)(40 52)(41 51)(42 50)(85 161)(86 160)(87 159)(88 158)(89 157)(90 156)(91 155)(92 154)(93 153)(94 152)(95 151)(96 150)(97 149)(98 148)(99 168)(100 167)(101 166)(102 165)(103 164)(104 163)(105 162)(106 129)(107 128)(108 127)(109 147)(110 146)(111 145)(112 144)(113 143)(114 142)(115 141)(116 140)(117 139)(118 138)(119 137)(120 136)(121 135)(122 134)(123 133)(124 132)(125 131)(126 130)
(1 126 33 88)(2 113 34 96)(3 121 35 104)(4 108 36 91)(5 116 37 99)(6 124 38 86)(7 111 39 94)(8 119 40 102)(9 106 41 89)(10 114 42 97)(11 122 22 105)(12 109 23 92)(13 117 24 100)(14 125 25 87)(15 112 26 95)(16 120 27 103)(17 107 28 90)(18 115 29 98)(19 123 30 85)(20 110 31 93)(21 118 32 101)(43 149 79 142)(44 157 80 129)(45 165 81 137)(46 152 82 145)(47 160 83 132)(48 168 84 140)(49 155 64 127)(50 163 65 135)(51 150 66 143)(52 158 67 130)(53 166 68 138)(54 153 69 146)(55 161 70 133)(56 148 71 141)(57 156 72 128)(58 164 73 136)(59 151 74 144)(60 159 75 131)(61 167 76 139)(62 154 77 147)(63 162 78 134)

G:=sub<Sym(168)| (1,60)(2,61)(3,62)(4,63)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,64)(23,65)(24,66)(25,67)(26,68)(27,69)(28,70)(29,71)(30,72)(31,73)(32,74)(33,75)(34,76)(35,77)(36,78)(37,79)(38,80)(39,81)(40,82)(41,83)(42,84)(85,128)(86,129)(87,130)(88,131)(89,132)(90,133)(91,134)(92,135)(93,136)(94,137)(95,138)(96,139)(97,140)(98,141)(99,142)(100,143)(101,144)(102,145)(103,146)(104,147)(105,127)(106,160)(107,161)(108,162)(109,163)(110,164)(111,165)(112,166)(113,167)(114,168)(115,148)(116,149)(117,150)(118,151)(119,152)(120,153)(121,154)(122,155)(123,156)(124,157)(125,158)(126,159), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,74)(2,73)(3,72)(4,71)(5,70)(6,69)(7,68)(8,67)(9,66)(10,65)(11,64)(12,84)(13,83)(14,82)(15,81)(16,80)(17,79)(18,78)(19,77)(20,76)(21,75)(22,49)(23,48)(24,47)(25,46)(26,45)(27,44)(28,43)(29,63)(30,62)(31,61)(32,60)(33,59)(34,58)(35,57)(36,56)(37,55)(38,54)(39,53)(40,52)(41,51)(42,50)(85,161)(86,160)(87,159)(88,158)(89,157)(90,156)(91,155)(92,154)(93,153)(94,152)(95,151)(96,150)(97,149)(98,148)(99,168)(100,167)(101,166)(102,165)(103,164)(104,163)(105,162)(106,129)(107,128)(108,127)(109,147)(110,146)(111,145)(112,144)(113,143)(114,142)(115,141)(116,140)(117,139)(118,138)(119,137)(120,136)(121,135)(122,134)(123,133)(124,132)(125,131)(126,130), (1,126,33,88)(2,113,34,96)(3,121,35,104)(4,108,36,91)(5,116,37,99)(6,124,38,86)(7,111,39,94)(8,119,40,102)(9,106,41,89)(10,114,42,97)(11,122,22,105)(12,109,23,92)(13,117,24,100)(14,125,25,87)(15,112,26,95)(16,120,27,103)(17,107,28,90)(18,115,29,98)(19,123,30,85)(20,110,31,93)(21,118,32,101)(43,149,79,142)(44,157,80,129)(45,165,81,137)(46,152,82,145)(47,160,83,132)(48,168,84,140)(49,155,64,127)(50,163,65,135)(51,150,66,143)(52,158,67,130)(53,166,68,138)(54,153,69,146)(55,161,70,133)(56,148,71,141)(57,156,72,128)(58,164,73,136)(59,151,74,144)(60,159,75,131)(61,167,76,139)(62,154,77,147)(63,162,78,134)>;

G:=Group( (1,60)(2,61)(3,62)(4,63)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,64)(23,65)(24,66)(25,67)(26,68)(27,69)(28,70)(29,71)(30,72)(31,73)(32,74)(33,75)(34,76)(35,77)(36,78)(37,79)(38,80)(39,81)(40,82)(41,83)(42,84)(85,128)(86,129)(87,130)(88,131)(89,132)(90,133)(91,134)(92,135)(93,136)(94,137)(95,138)(96,139)(97,140)(98,141)(99,142)(100,143)(101,144)(102,145)(103,146)(104,147)(105,127)(106,160)(107,161)(108,162)(109,163)(110,164)(111,165)(112,166)(113,167)(114,168)(115,148)(116,149)(117,150)(118,151)(119,152)(120,153)(121,154)(122,155)(123,156)(124,157)(125,158)(126,159), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,74)(2,73)(3,72)(4,71)(5,70)(6,69)(7,68)(8,67)(9,66)(10,65)(11,64)(12,84)(13,83)(14,82)(15,81)(16,80)(17,79)(18,78)(19,77)(20,76)(21,75)(22,49)(23,48)(24,47)(25,46)(26,45)(27,44)(28,43)(29,63)(30,62)(31,61)(32,60)(33,59)(34,58)(35,57)(36,56)(37,55)(38,54)(39,53)(40,52)(41,51)(42,50)(85,161)(86,160)(87,159)(88,158)(89,157)(90,156)(91,155)(92,154)(93,153)(94,152)(95,151)(96,150)(97,149)(98,148)(99,168)(100,167)(101,166)(102,165)(103,164)(104,163)(105,162)(106,129)(107,128)(108,127)(109,147)(110,146)(111,145)(112,144)(113,143)(114,142)(115,141)(116,140)(117,139)(118,138)(119,137)(120,136)(121,135)(122,134)(123,133)(124,132)(125,131)(126,130), (1,126,33,88)(2,113,34,96)(3,121,35,104)(4,108,36,91)(5,116,37,99)(6,124,38,86)(7,111,39,94)(8,119,40,102)(9,106,41,89)(10,114,42,97)(11,122,22,105)(12,109,23,92)(13,117,24,100)(14,125,25,87)(15,112,26,95)(16,120,27,103)(17,107,28,90)(18,115,29,98)(19,123,30,85)(20,110,31,93)(21,118,32,101)(43,149,79,142)(44,157,80,129)(45,165,81,137)(46,152,82,145)(47,160,83,132)(48,168,84,140)(49,155,64,127)(50,163,65,135)(51,150,66,143)(52,158,67,130)(53,166,68,138)(54,153,69,146)(55,161,70,133)(56,148,71,141)(57,156,72,128)(58,164,73,136)(59,151,74,144)(60,159,75,131)(61,167,76,139)(62,154,77,147)(63,162,78,134) );

G=PermutationGroup([[(1,60),(2,61),(3,62),(4,63),(5,43),(6,44),(7,45),(8,46),(9,47),(10,48),(11,49),(12,50),(13,51),(14,52),(15,53),(16,54),(17,55),(18,56),(19,57),(20,58),(21,59),(22,64),(23,65),(24,66),(25,67),(26,68),(27,69),(28,70),(29,71),(30,72),(31,73),(32,74),(33,75),(34,76),(35,77),(36,78),(37,79),(38,80),(39,81),(40,82),(41,83),(42,84),(85,128),(86,129),(87,130),(88,131),(89,132),(90,133),(91,134),(92,135),(93,136),(94,137),(95,138),(96,139),(97,140),(98,141),(99,142),(100,143),(101,144),(102,145),(103,146),(104,147),(105,127),(106,160),(107,161),(108,162),(109,163),(110,164),(111,165),(112,166),(113,167),(114,168),(115,148),(116,149),(117,150),(118,151),(119,152),(120,153),(121,154),(122,155),(123,156),(124,157),(125,158),(126,159)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147),(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,74),(2,73),(3,72),(4,71),(5,70),(6,69),(7,68),(8,67),(9,66),(10,65),(11,64),(12,84),(13,83),(14,82),(15,81),(16,80),(17,79),(18,78),(19,77),(20,76),(21,75),(22,49),(23,48),(24,47),(25,46),(26,45),(27,44),(28,43),(29,63),(30,62),(31,61),(32,60),(33,59),(34,58),(35,57),(36,56),(37,55),(38,54),(39,53),(40,52),(41,51),(42,50),(85,161),(86,160),(87,159),(88,158),(89,157),(90,156),(91,155),(92,154),(93,153),(94,152),(95,151),(96,150),(97,149),(98,148),(99,168),(100,167),(101,166),(102,165),(103,164),(104,163),(105,162),(106,129),(107,128),(108,127),(109,147),(110,146),(111,145),(112,144),(113,143),(114,142),(115,141),(116,140),(117,139),(118,138),(119,137),(120,136),(121,135),(122,134),(123,133),(124,132),(125,131),(126,130)], [(1,126,33,88),(2,113,34,96),(3,121,35,104),(4,108,36,91),(5,116,37,99),(6,124,38,86),(7,111,39,94),(8,119,40,102),(9,106,41,89),(10,114,42,97),(11,122,22,105),(12,109,23,92),(13,117,24,100),(14,125,25,87),(15,112,26,95),(16,120,27,103),(17,107,28,90),(18,115,29,98),(19,123,30,85),(20,110,31,93),(21,118,32,101),(43,149,79,142),(44,157,80,129),(45,165,81,137),(46,152,82,145),(47,160,83,132),(48,168,84,140),(49,155,64,127),(50,163,65,135),(51,150,66,143),(52,158,67,130),(53,166,68,138),(54,153,69,146),(55,161,70,133),(56,148,71,141),(57,156,72,128),(58,164,73,136),(59,151,74,144),(60,159,75,131),(61,167,76,139),(62,154,77,147),(63,162,78,134)]])

60 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H6A6B6C7A7B7C12A12B12C12D14A···14I21A21B21C28A···28L42A···42I
order122222223444444446667771212121214···1421212128···2842···42
size111121212121233337777222222141414142···24446···64···4

60 irreducible representations

dim11111122222222444
type++++++++++++++
imageC1C2C2C2C2C4S3D6D6D7C4×S3D14D14C4×D7S3×D7D21⋊C4C2×S3×D7
kernelC2×D21⋊C4D21⋊C4C6×Dic7Dic3×C14C22×D21D42C2×Dic7Dic7C2×C14C2×Dic3C14Dic3C2×C6C6C22C2C2
# reps141118121346312363

Matrix representation of C2×D21⋊C4 in GL6(𝔽337)

33600000
03360000
00336000
00033600
000010
000001
,
1431430000
51840000
0033630300
003414400
00000336
00001336
,
100000
753360000
0013400
00033600
00001336
00000336
,
18900000
01890000
001000
000100
00000336
00003360

G:=sub<GL(6,GF(337))| [336,0,0,0,0,0,0,336,0,0,0,0,0,0,336,0,0,0,0,0,0,336,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[143,51,0,0,0,0,143,84,0,0,0,0,0,0,336,34,0,0,0,0,303,144,0,0,0,0,0,0,0,1,0,0,0,0,336,336],[1,75,0,0,0,0,0,336,0,0,0,0,0,0,1,0,0,0,0,0,34,336,0,0,0,0,0,0,1,0,0,0,0,0,336,336],[189,0,0,0,0,0,0,189,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,336,0,0,0,0,336,0] >;

C2×D21⋊C4 in GAP, Magma, Sage, TeX

C_2\times D_{21}\rtimes C_4
% in TeX

G:=Group("C2xD21:C4");
// GroupNames label

G:=SmallGroup(336,156);
// by ID

G=gap.SmallGroup(336,156);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-7,48,55,490,10373]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^21=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=b^8,d*c*d^-1=b^7*c>;
// generators/relations

׿
×
𝔽