Extensions 1→N→G→Q→1 with N=C2×Dic3 and Q=C14

Direct product G=N×Q with N=C2×Dic3 and Q=C14

Semidirect products G=N:Q with N=C2×Dic3 and Q=C14
extensionφ:Q→Out NdρLabelID
(C2×Dic3)⋊1C14 = C7×D6⋊C4φ: C14/C7C2 ⊆ Out C2×Dic3168(C2xDic3):1C14336,84
(C2×Dic3)⋊2C14 = C7×C6.D4φ: C14/C7C2 ⊆ Out C2×Dic3168(C2xDic3):2C14336,89
(C2×Dic3)⋊3C14 = C7×D42S3φ: C14/C7C2 ⊆ Out C2×Dic31684(C2xDic3):3C14336,189
(C2×Dic3)⋊4C14 = C14×C3⋊D4φ: C14/C7C2 ⊆ Out C2×Dic3168(C2xDic3):4C14336,193
(C2×Dic3)⋊5C14 = S3×C2×C28φ: trivial image168(C2xDic3):5C14336,185

Non-split extensions G=N.Q with N=C2×Dic3 and Q=C14
extensionφ:Q→Out NdρLabelID
(C2×Dic3).1C14 = C7×Dic3⋊C4φ: C14/C7C2 ⊆ Out C2×Dic3336(C2xDic3).1C14336,82
(C2×Dic3).2C14 = C7×C4⋊Dic3φ: C14/C7C2 ⊆ Out C2×Dic3336(C2xDic3).2C14336,83
(C2×Dic3).3C14 = C14×Dic6φ: C14/C7C2 ⊆ Out C2×Dic3336(C2xDic3).3C14336,184
(C2×Dic3).4C14 = Dic3×C28φ: trivial image336(C2xDic3).4C14336,81