Extensions 1→N→G→Q→1 with N=C2xDic3 and Q=C14

Direct product G=NxQ with N=C2xDic3 and Q=C14
dρLabelID
Dic3xC2xC14336Dic3xC2xC14336,192

Semidirect products G=N:Q with N=C2xDic3 and Q=C14
extensionφ:Q→Out NdρLabelID
(C2xDic3):1C14 = C7xD6:C4φ: C14/C7C2 ⊆ Out C2xDic3168(C2xDic3):1C14336,84
(C2xDic3):2C14 = C7xC6.D4φ: C14/C7C2 ⊆ Out C2xDic3168(C2xDic3):2C14336,89
(C2xDic3):3C14 = C7xD4:2S3φ: C14/C7C2 ⊆ Out C2xDic31684(C2xDic3):3C14336,189
(C2xDic3):4C14 = C14xC3:D4φ: C14/C7C2 ⊆ Out C2xDic3168(C2xDic3):4C14336,193
(C2xDic3):5C14 = S3xC2xC28φ: trivial image168(C2xDic3):5C14336,185

Non-split extensions G=N.Q with N=C2xDic3 and Q=C14
extensionφ:Q→Out NdρLabelID
(C2xDic3).1C14 = C7xDic3:C4φ: C14/C7C2 ⊆ Out C2xDic3336(C2xDic3).1C14336,82
(C2xDic3).2C14 = C7xC4:Dic3φ: C14/C7C2 ⊆ Out C2xDic3336(C2xDic3).2C14336,83
(C2xDic3).3C14 = C14xDic6φ: C14/C7C2 ⊆ Out C2xDic3336(C2xDic3).3C14336,184
(C2xDic3).4C14 = Dic3xC28φ: trivial image336(C2xDic3).4C14336,81

׿
x
:
Z
F
o
wr
Q
<