Copied to
clipboard

G = S3×C2×C28order 336 = 24·3·7

Direct product of C2×C28 and S3

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: S3×C2×C28, C8413C22, C42.49C23, C426(C2×C4), C61(C2×C28), C123(C2×C14), (C2×C12)⋊5C14, (C2×C84)⋊13C2, C31(C22×C28), C217(C22×C4), D6.4(C2×C14), (C2×C14).37D6, Dic33(C2×C14), (C2×Dic3)⋊5C14, C22.9(S3×C14), C6.2(C22×C14), (Dic3×C14)⋊11C2, (C22×S3).2C14, C14.39(C22×S3), (C2×C42).48C22, (S3×C14).15C22, (C7×Dic3)⋊10C22, C2.1(S3×C2×C14), (S3×C2×C14).4C2, (C2×C6).9(C2×C14), SmallGroup(336,185)

Series: Derived Chief Lower central Upper central

C1C3 — S3×C2×C28
C1C3C6C42S3×C14S3×C2×C14 — S3×C2×C28
C3 — S3×C2×C28
C1C2×C28

Generators and relations for S3×C2×C28
 G = < a,b,c,d | a2=b28=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 184 in 108 conjugacy classes, 70 normal (22 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C7, C2×C4, C2×C4, C23, Dic3, C12, D6, C2×C6, C14, C14, C14, C22×C4, C21, C4×S3, C2×Dic3, C2×C12, C22×S3, C28, C28, C2×C14, C2×C14, S3×C7, C42, C42, S3×C2×C4, C2×C28, C2×C28, C22×C14, C7×Dic3, C84, S3×C14, C2×C42, C22×C28, S3×C28, Dic3×C14, C2×C84, S3×C2×C14, S3×C2×C28
Quotients: C1, C2, C4, C22, S3, C7, C2×C4, C23, D6, C14, C22×C4, C4×S3, C22×S3, C28, C2×C14, S3×C7, S3×C2×C4, C2×C28, C22×C14, S3×C14, C22×C28, S3×C28, S3×C2×C14, S3×C2×C28

Smallest permutation representation of S3×C2×C28
On 168 points
Generators in S168
(1 77)(2 78)(3 79)(4 80)(5 81)(6 82)(7 83)(8 84)(9 57)(10 58)(11 59)(12 60)(13 61)(14 62)(15 63)(16 64)(17 65)(18 66)(19 67)(20 68)(21 69)(22 70)(23 71)(24 72)(25 73)(26 74)(27 75)(28 76)(29 86)(30 87)(31 88)(32 89)(33 90)(34 91)(35 92)(36 93)(37 94)(38 95)(39 96)(40 97)(41 98)(42 99)(43 100)(44 101)(45 102)(46 103)(47 104)(48 105)(49 106)(50 107)(51 108)(52 109)(53 110)(54 111)(55 112)(56 85)(113 158)(114 159)(115 160)(116 161)(117 162)(118 163)(119 164)(120 165)(121 166)(122 167)(123 168)(124 141)(125 142)(126 143)(127 144)(128 145)(129 146)(130 147)(131 148)(132 149)(133 150)(134 151)(135 152)(136 153)(137 154)(138 155)(139 156)(140 157)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 93 154)(2 94 155)(3 95 156)(4 96 157)(5 97 158)(6 98 159)(7 99 160)(8 100 161)(9 101 162)(10 102 163)(11 103 164)(12 104 165)(13 105 166)(14 106 167)(15 107 168)(16 108 141)(17 109 142)(18 110 143)(19 111 144)(20 112 145)(21 85 146)(22 86 147)(23 87 148)(24 88 149)(25 89 150)(26 90 151)(27 91 152)(28 92 153)(29 130 70)(30 131 71)(31 132 72)(32 133 73)(33 134 74)(34 135 75)(35 136 76)(36 137 77)(37 138 78)(38 139 79)(39 140 80)(40 113 81)(41 114 82)(42 115 83)(43 116 84)(44 117 57)(45 118 58)(46 119 59)(47 120 60)(48 121 61)(49 122 62)(50 123 63)(51 124 64)(52 125 65)(53 126 66)(54 127 67)(55 128 68)(56 129 69)
(29 130)(30 131)(31 132)(32 133)(33 134)(34 135)(35 136)(36 137)(37 138)(38 139)(39 140)(40 113)(41 114)(42 115)(43 116)(44 117)(45 118)(46 119)(47 120)(48 121)(49 122)(50 123)(51 124)(52 125)(53 126)(54 127)(55 128)(56 129)(85 146)(86 147)(87 148)(88 149)(89 150)(90 151)(91 152)(92 153)(93 154)(94 155)(95 156)(96 157)(97 158)(98 159)(99 160)(100 161)(101 162)(102 163)(103 164)(104 165)(105 166)(106 167)(107 168)(108 141)(109 142)(110 143)(111 144)(112 145)

G:=sub<Sym(168)| (1,77)(2,78)(3,79)(4,80)(5,81)(6,82)(7,83)(8,84)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,86)(30,87)(31,88)(32,89)(33,90)(34,91)(35,92)(36,93)(37,94)(38,95)(39,96)(40,97)(41,98)(42,99)(43,100)(44,101)(45,102)(46,103)(47,104)(48,105)(49,106)(50,107)(51,108)(52,109)(53,110)(54,111)(55,112)(56,85)(113,158)(114,159)(115,160)(116,161)(117,162)(118,163)(119,164)(120,165)(121,166)(122,167)(123,168)(124,141)(125,142)(126,143)(127,144)(128,145)(129,146)(130,147)(131,148)(132,149)(133,150)(134,151)(135,152)(136,153)(137,154)(138,155)(139,156)(140,157), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,93,154)(2,94,155)(3,95,156)(4,96,157)(5,97,158)(6,98,159)(7,99,160)(8,100,161)(9,101,162)(10,102,163)(11,103,164)(12,104,165)(13,105,166)(14,106,167)(15,107,168)(16,108,141)(17,109,142)(18,110,143)(19,111,144)(20,112,145)(21,85,146)(22,86,147)(23,87,148)(24,88,149)(25,89,150)(26,90,151)(27,91,152)(28,92,153)(29,130,70)(30,131,71)(31,132,72)(32,133,73)(33,134,74)(34,135,75)(35,136,76)(36,137,77)(37,138,78)(38,139,79)(39,140,80)(40,113,81)(41,114,82)(42,115,83)(43,116,84)(44,117,57)(45,118,58)(46,119,59)(47,120,60)(48,121,61)(49,122,62)(50,123,63)(51,124,64)(52,125,65)(53,126,66)(54,127,67)(55,128,68)(56,129,69), (29,130)(30,131)(31,132)(32,133)(33,134)(34,135)(35,136)(36,137)(37,138)(38,139)(39,140)(40,113)(41,114)(42,115)(43,116)(44,117)(45,118)(46,119)(47,120)(48,121)(49,122)(50,123)(51,124)(52,125)(53,126)(54,127)(55,128)(56,129)(85,146)(86,147)(87,148)(88,149)(89,150)(90,151)(91,152)(92,153)(93,154)(94,155)(95,156)(96,157)(97,158)(98,159)(99,160)(100,161)(101,162)(102,163)(103,164)(104,165)(105,166)(106,167)(107,168)(108,141)(109,142)(110,143)(111,144)(112,145)>;

G:=Group( (1,77)(2,78)(3,79)(4,80)(5,81)(6,82)(7,83)(8,84)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,86)(30,87)(31,88)(32,89)(33,90)(34,91)(35,92)(36,93)(37,94)(38,95)(39,96)(40,97)(41,98)(42,99)(43,100)(44,101)(45,102)(46,103)(47,104)(48,105)(49,106)(50,107)(51,108)(52,109)(53,110)(54,111)(55,112)(56,85)(113,158)(114,159)(115,160)(116,161)(117,162)(118,163)(119,164)(120,165)(121,166)(122,167)(123,168)(124,141)(125,142)(126,143)(127,144)(128,145)(129,146)(130,147)(131,148)(132,149)(133,150)(134,151)(135,152)(136,153)(137,154)(138,155)(139,156)(140,157), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,93,154)(2,94,155)(3,95,156)(4,96,157)(5,97,158)(6,98,159)(7,99,160)(8,100,161)(9,101,162)(10,102,163)(11,103,164)(12,104,165)(13,105,166)(14,106,167)(15,107,168)(16,108,141)(17,109,142)(18,110,143)(19,111,144)(20,112,145)(21,85,146)(22,86,147)(23,87,148)(24,88,149)(25,89,150)(26,90,151)(27,91,152)(28,92,153)(29,130,70)(30,131,71)(31,132,72)(32,133,73)(33,134,74)(34,135,75)(35,136,76)(36,137,77)(37,138,78)(38,139,79)(39,140,80)(40,113,81)(41,114,82)(42,115,83)(43,116,84)(44,117,57)(45,118,58)(46,119,59)(47,120,60)(48,121,61)(49,122,62)(50,123,63)(51,124,64)(52,125,65)(53,126,66)(54,127,67)(55,128,68)(56,129,69), (29,130)(30,131)(31,132)(32,133)(33,134)(34,135)(35,136)(36,137)(37,138)(38,139)(39,140)(40,113)(41,114)(42,115)(43,116)(44,117)(45,118)(46,119)(47,120)(48,121)(49,122)(50,123)(51,124)(52,125)(53,126)(54,127)(55,128)(56,129)(85,146)(86,147)(87,148)(88,149)(89,150)(90,151)(91,152)(92,153)(93,154)(94,155)(95,156)(96,157)(97,158)(98,159)(99,160)(100,161)(101,162)(102,163)(103,164)(104,165)(105,166)(106,167)(107,168)(108,141)(109,142)(110,143)(111,144)(112,145) );

G=PermutationGroup([[(1,77),(2,78),(3,79),(4,80),(5,81),(6,82),(7,83),(8,84),(9,57),(10,58),(11,59),(12,60),(13,61),(14,62),(15,63),(16,64),(17,65),(18,66),(19,67),(20,68),(21,69),(22,70),(23,71),(24,72),(25,73),(26,74),(27,75),(28,76),(29,86),(30,87),(31,88),(32,89),(33,90),(34,91),(35,92),(36,93),(37,94),(38,95),(39,96),(40,97),(41,98),(42,99),(43,100),(44,101),(45,102),(46,103),(47,104),(48,105),(49,106),(50,107),(51,108),(52,109),(53,110),(54,111),(55,112),(56,85),(113,158),(114,159),(115,160),(116,161),(117,162),(118,163),(119,164),(120,165),(121,166),(122,167),(123,168),(124,141),(125,142),(126,143),(127,144),(128,145),(129,146),(130,147),(131,148),(132,149),(133,150),(134,151),(135,152),(136,153),(137,154),(138,155),(139,156),(140,157)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,93,154),(2,94,155),(3,95,156),(4,96,157),(5,97,158),(6,98,159),(7,99,160),(8,100,161),(9,101,162),(10,102,163),(11,103,164),(12,104,165),(13,105,166),(14,106,167),(15,107,168),(16,108,141),(17,109,142),(18,110,143),(19,111,144),(20,112,145),(21,85,146),(22,86,147),(23,87,148),(24,88,149),(25,89,150),(26,90,151),(27,91,152),(28,92,153),(29,130,70),(30,131,71),(31,132,72),(32,133,73),(33,134,74),(34,135,75),(35,136,76),(36,137,77),(37,138,78),(38,139,79),(39,140,80),(40,113,81),(41,114,82),(42,115,83),(43,116,84),(44,117,57),(45,118,58),(46,119,59),(47,120,60),(48,121,61),(49,122,62),(50,123,63),(51,124,64),(52,125,65),(53,126,66),(54,127,67),(55,128,68),(56,129,69)], [(29,130),(30,131),(31,132),(32,133),(33,134),(34,135),(35,136),(36,137),(37,138),(38,139),(39,140),(40,113),(41,114),(42,115),(43,116),(44,117),(45,118),(46,119),(47,120),(48,121),(49,122),(50,123),(51,124),(52,125),(53,126),(54,127),(55,128),(56,129),(85,146),(86,147),(87,148),(88,149),(89,150),(90,151),(91,152),(92,153),(93,154),(94,155),(95,156),(96,157),(97,158),(98,159),(99,160),(100,161),(101,162),(102,163),(103,164),(104,165),(105,166),(106,167),(107,168),(108,141),(109,142),(110,143),(111,144),(112,145)]])

168 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H6A6B6C7A···7F12A12B12C12D14A···14R14S···14AP21A···21F28A···28X28Y···28AV42A···42R84A···84X
order122222223444444446667···71212121214···1414···1421···2128···2828···2842···4284···84
size111133332111133332221···122221···13···32···21···13···32···22···2

168 irreducible representations

dim11111111111122222222
type++++++++
imageC1C2C2C2C2C4C7C14C14C14C14C28S3D6D6C4×S3S3×C7S3×C14S3×C14S3×C28
kernelS3×C2×C28S3×C28Dic3×C14C2×C84S3×C2×C14S3×C14S3×C2×C4C4×S3C2×Dic3C2×C12C22×S3D6C2×C28C28C2×C14C14C2×C4C4C22C2
# reps141118624666481214612624

Matrix representation of S3×C2×C28 in GL3(𝔽337) generated by

33600
03360
00336
,
3600
0420
0042
,
100
0336336
010
,
33600
010
0336336
G:=sub<GL(3,GF(337))| [336,0,0,0,336,0,0,0,336],[36,0,0,0,42,0,0,0,42],[1,0,0,0,336,1,0,336,0],[336,0,0,0,1,336,0,0,336] >;

S3×C2×C28 in GAP, Magma, Sage, TeX

S_3\times C_2\times C_{28}
% in TeX

G:=Group("S3xC2xC28");
// GroupNames label

G:=SmallGroup(336,185);
// by ID

G=gap.SmallGroup(336,185);
# by ID

G:=PCGroup([6,-2,-2,-2,-7,-2,-3,266,8069]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^28=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽