Extensions 1→N→G→Q→1 with N=C4 and Q=D4xC11

Direct product G=NxQ with N=C4 and Q=D4xC11
dρLabelID
D4xC44176D4xC44352,153

Semidirect products G=N:Q with N=C4 and Q=D4xC11
extensionφ:Q→Aut NdρLabelID
C4:1(D4xC11) = C11xC4:1D4φ: D4xC11/C44C2 ⊆ Aut C4176C4:1(D4xC11)352,162
C4:2(D4xC11) = C11xC4:D4φ: D4xC11/C2xC22C2 ⊆ Aut C4176C4:2(D4xC11)352,156

Non-split extensions G=N.Q with N=C4 and Q=D4xC11
extensionφ:Q→Aut NdρLabelID
C4.1(D4xC11) = C11xD16φ: D4xC11/C44C2 ⊆ Aut C41762C4.1(D4xC11)352,60
C4.2(D4xC11) = C11xSD32φ: D4xC11/C44C2 ⊆ Aut C41762C4.2(D4xC11)352,61
C4.3(D4xC11) = C11xQ32φ: D4xC11/C44C2 ⊆ Aut C43522C4.3(D4xC11)352,62
C4.4(D4xC11) = C11xC4.4D4φ: D4xC11/C44C2 ⊆ Aut C4176C4.4(D4xC11)352,159
C4.5(D4xC11) = C11xC4:Q8φ: D4xC11/C44C2 ⊆ Aut C4352C4.5(D4xC11)352,163
C4.6(D4xC11) = D8xC22φ: D4xC11/C44C2 ⊆ Aut C4176C4.6(D4xC11)352,167
C4.7(D4xC11) = SD16xC22φ: D4xC11/C44C2 ⊆ Aut C4176C4.7(D4xC11)352,168
C4.8(D4xC11) = Q16xC22φ: D4xC11/C44C2 ⊆ Aut C4352C4.8(D4xC11)352,169
C4.9(D4xC11) = C11xC4.D4φ: D4xC11/C2xC22C2 ⊆ Aut C4884C4.9(D4xC11)352,49
C4.10(D4xC11) = C11xC4.10D4φ: D4xC11/C2xC22C2 ⊆ Aut C41764C4.10(D4xC11)352,50
C4.11(D4xC11) = C11xD4:C4φ: D4xC11/C2xC22C2 ⊆ Aut C4176C4.11(D4xC11)352,51
C4.12(D4xC11) = C11xQ8:C4φ: D4xC11/C2xC22C2 ⊆ Aut C4352C4.12(D4xC11)352,52
C4.13(D4xC11) = C11xC22:Q8φ: D4xC11/C2xC22C2 ⊆ Aut C4176C4.13(D4xC11)352,157
C4.14(D4xC11) = C11xC8:C22φ: D4xC11/C2xC22C2 ⊆ Aut C4884C4.14(D4xC11)352,171
C4.15(D4xC11) = C11xC8.C22φ: D4xC11/C2xC22C2 ⊆ Aut C41764C4.15(D4xC11)352,172
C4.16(D4xC11) = C11xC22:C8central extension (φ=1)176C4.16(D4xC11)352,47
C4.17(D4xC11) = C11xC4wrC2central extension (φ=1)882C4.17(D4xC11)352,53
C4.18(D4xC11) = C11xC4:C8central extension (φ=1)352C4.18(D4xC11)352,54
C4.19(D4xC11) = C11xC8.C4central extension (φ=1)1762C4.19(D4xC11)352,57
C4.20(D4xC11) = C11xC4oD8central extension (φ=1)1762C4.20(D4xC11)352,170

׿
x
:
Z
F
o
wr
Q
<