extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C88)⋊1C2 = D22⋊C8 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 176 | | (C2xC88):1C2 | 352,26 |
(C2×C88)⋊2C2 = C2.D88 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 176 | | (C2xC88):2C2 | 352,27 |
(C2×C88)⋊3C2 = C11×C22⋊C8 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 176 | | (C2xC88):3C2 | 352,47 |
(C2×C88)⋊4C2 = C11×D4⋊C4 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 176 | | (C2xC88):4C2 | 352,51 |
(C2×C88)⋊5C2 = C2×D88 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 176 | | (C2xC88):5C2 | 352,98 |
(C2×C88)⋊6C2 = D88⋊7C2 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 176 | 2 | (C2xC88):6C2 | 352,99 |
(C2×C88)⋊7C2 = C2×C8⋊D11 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 176 | | (C2xC88):7C2 | 352,97 |
(C2×C88)⋊8C2 = C2×C8×D11 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 176 | | (C2xC88):8C2 | 352,94 |
(C2×C88)⋊9C2 = C2×C88⋊C2 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 176 | | (C2xC88):9C2 | 352,95 |
(C2×C88)⋊10C2 = D44.2C4 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 176 | 2 | (C2xC88):10C2 | 352,96 |
(C2×C88)⋊11C2 = D8×C22 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 176 | | (C2xC88):11C2 | 352,167 |
(C2×C88)⋊12C2 = C11×C4○D8 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 176 | 2 | (C2xC88):12C2 | 352,170 |
(C2×C88)⋊13C2 = SD16×C22 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 176 | | (C2xC88):13C2 | 352,168 |
(C2×C88)⋊14C2 = M4(2)×C22 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 176 | | (C2xC88):14C2 | 352,165 |
(C2×C88)⋊15C2 = C11×C8○D4 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 176 | 2 | (C2xC88):15C2 | 352,166 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C88).1C2 = Dic11⋊C8 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 352 | | (C2xC88).1C2 | 352,20 |
(C2×C88).2C2 = C44.44D4 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 352 | | (C2xC88).2C2 | 352,22 |
(C2×C88).3C2 = C11×Q8⋊C4 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 352 | | (C2xC88).3C2 | 352,52 |
(C2×C88).4C2 = C11×C4⋊C8 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 352 | | (C2xC88).4C2 | 352,54 |
(C2×C88).5C2 = C44.5Q8 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 352 | | (C2xC88).5C2 | 352,24 |
(C2×C88).6C2 = C2×Dic44 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 352 | | (C2xC88).6C2 | 352,100 |
(C2×C88).7C2 = C88.C4 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 176 | 2 | (C2xC88).7C2 | 352,25 |
(C2×C88).8C2 = C44.4Q8 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 352 | | (C2xC88).8C2 | 352,23 |
(C2×C88).9C2 = C2×C11⋊C16 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 352 | | (C2xC88).9C2 | 352,17 |
(C2×C88).10C2 = C44.C8 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 176 | 2 | (C2xC88).10C2 | 352,18 |
(C2×C88).11C2 = C8×Dic11 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 352 | | (C2xC88).11C2 | 352,19 |
(C2×C88).12C2 = C88⋊C4 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 352 | | (C2xC88).12C2 | 352,21 |
(C2×C88).13C2 = C11×C2.D8 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 352 | | (C2xC88).13C2 | 352,56 |
(C2×C88).14C2 = Q16×C22 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 352 | | (C2xC88).14C2 | 352,169 |
(C2×C88).15C2 = C11×C8.C4 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 176 | 2 | (C2xC88).15C2 | 352,57 |
(C2×C88).16C2 = C11×C4.Q8 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 352 | | (C2xC88).16C2 | 352,55 |
(C2×C88).17C2 = C11×C8⋊C4 | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 352 | | (C2xC88).17C2 | 352,46 |
(C2×C88).18C2 = C11×M5(2) | φ: C2/C1 → C2 ⊆ Aut C2×C88 | 176 | 2 | (C2xC88).18C2 | 352,59 |