metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D88⋊7C2, C44.35D4, C8.17D22, C4.20D44, Dic44⋊7C2, C22.1D44, C88.17C22, C44.30C23, D44.7C22, Dic22.6C22, (C2×C88)⋊6C2, (C2×C8)⋊4D11, C11⋊1(C4○D8), C8⋊D11⋊7C2, (C2×C22).18D4, C22.11(C2×D4), C2.13(C2×D44), (C2×C4).81D22, D44⋊5C2⋊1C2, (C2×C44).99C22, C4.28(C22×D11), SmallGroup(352,99)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D88⋊7C2
G = < a,b,c | a88=b2=c2=1, bab=a-1, ac=ca, cbc=a44b >
Subgroups: 442 in 62 conjugacy classes, 29 normal (21 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C11, C2×C8, D8, SD16, Q16, C4○D4, D11, C22, C22, C4○D8, Dic11, C44, D22, C2×C22, C88, Dic22, C4×D11, D44, C11⋊D4, C2×C44, C8⋊D11, D88, Dic44, C2×C88, D44⋊5C2, D88⋊7C2
Quotients: C1, C2, C22, D4, C23, C2×D4, D11, C4○D8, D22, D44, C22×D11, C2×D44, D88⋊7C2
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176)
(1 55)(2 54)(3 53)(4 52)(5 51)(6 50)(7 49)(8 48)(9 47)(10 46)(11 45)(12 44)(13 43)(14 42)(15 41)(16 40)(17 39)(18 38)(19 37)(20 36)(21 35)(22 34)(23 33)(24 32)(25 31)(26 30)(27 29)(56 88)(57 87)(58 86)(59 85)(60 84)(61 83)(62 82)(63 81)(64 80)(65 79)(66 78)(67 77)(68 76)(69 75)(70 74)(71 73)(89 97)(90 96)(91 95)(92 94)(98 176)(99 175)(100 174)(101 173)(102 172)(103 171)(104 170)(105 169)(106 168)(107 167)(108 166)(109 165)(110 164)(111 163)(112 162)(113 161)(114 160)(115 159)(116 158)(117 157)(118 156)(119 155)(120 154)(121 153)(122 152)(123 151)(124 150)(125 149)(126 148)(127 147)(128 146)(129 145)(130 144)(131 143)(132 142)(133 141)(134 140)(135 139)(136 138)
(1 132)(2 133)(3 134)(4 135)(5 136)(6 137)(7 138)(8 139)(9 140)(10 141)(11 142)(12 143)(13 144)(14 145)(15 146)(16 147)(17 148)(18 149)(19 150)(20 151)(21 152)(22 153)(23 154)(24 155)(25 156)(26 157)(27 158)(28 159)(29 160)(30 161)(31 162)(32 163)(33 164)(34 165)(35 166)(36 167)(37 168)(38 169)(39 170)(40 171)(41 172)(42 173)(43 174)(44 175)(45 176)(46 89)(47 90)(48 91)(49 92)(50 93)(51 94)(52 95)(53 96)(54 97)(55 98)(56 99)(57 100)(58 101)(59 102)(60 103)(61 104)(62 105)(63 106)(64 107)(65 108)(66 109)(67 110)(68 111)(69 112)(70 113)(71 114)(72 115)(73 116)(74 117)(75 118)(76 119)(77 120)(78 121)(79 122)(80 123)(81 124)(82 125)(83 126)(84 127)(85 128)(86 129)(87 130)(88 131)
G:=sub<Sym(176)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (1,55)(2,54)(3,53)(4,52)(5,51)(6,50)(7,49)(8,48)(9,47)(10,46)(11,45)(12,44)(13,43)(14,42)(15,41)(16,40)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(56,88)(57,87)(58,86)(59,85)(60,84)(61,83)(62,82)(63,81)(64,80)(65,79)(66,78)(67,77)(68,76)(69,75)(70,74)(71,73)(89,97)(90,96)(91,95)(92,94)(98,176)(99,175)(100,174)(101,173)(102,172)(103,171)(104,170)(105,169)(106,168)(107,167)(108,166)(109,165)(110,164)(111,163)(112,162)(113,161)(114,160)(115,159)(116,158)(117,157)(118,156)(119,155)(120,154)(121,153)(122,152)(123,151)(124,150)(125,149)(126,148)(127,147)(128,146)(129,145)(130,144)(131,143)(132,142)(133,141)(134,140)(135,139)(136,138), (1,132)(2,133)(3,134)(4,135)(5,136)(6,137)(7,138)(8,139)(9,140)(10,141)(11,142)(12,143)(13,144)(14,145)(15,146)(16,147)(17,148)(18,149)(19,150)(20,151)(21,152)(22,153)(23,154)(24,155)(25,156)(26,157)(27,158)(28,159)(29,160)(30,161)(31,162)(32,163)(33,164)(34,165)(35,166)(36,167)(37,168)(38,169)(39,170)(40,171)(41,172)(42,173)(43,174)(44,175)(45,176)(46,89)(47,90)(48,91)(49,92)(50,93)(51,94)(52,95)(53,96)(54,97)(55,98)(56,99)(57,100)(58,101)(59,102)(60,103)(61,104)(62,105)(63,106)(64,107)(65,108)(66,109)(67,110)(68,111)(69,112)(70,113)(71,114)(72,115)(73,116)(74,117)(75,118)(76,119)(77,120)(78,121)(79,122)(80,123)(81,124)(82,125)(83,126)(84,127)(85,128)(86,129)(87,130)(88,131)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (1,55)(2,54)(3,53)(4,52)(5,51)(6,50)(7,49)(8,48)(9,47)(10,46)(11,45)(12,44)(13,43)(14,42)(15,41)(16,40)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(56,88)(57,87)(58,86)(59,85)(60,84)(61,83)(62,82)(63,81)(64,80)(65,79)(66,78)(67,77)(68,76)(69,75)(70,74)(71,73)(89,97)(90,96)(91,95)(92,94)(98,176)(99,175)(100,174)(101,173)(102,172)(103,171)(104,170)(105,169)(106,168)(107,167)(108,166)(109,165)(110,164)(111,163)(112,162)(113,161)(114,160)(115,159)(116,158)(117,157)(118,156)(119,155)(120,154)(121,153)(122,152)(123,151)(124,150)(125,149)(126,148)(127,147)(128,146)(129,145)(130,144)(131,143)(132,142)(133,141)(134,140)(135,139)(136,138), (1,132)(2,133)(3,134)(4,135)(5,136)(6,137)(7,138)(8,139)(9,140)(10,141)(11,142)(12,143)(13,144)(14,145)(15,146)(16,147)(17,148)(18,149)(19,150)(20,151)(21,152)(22,153)(23,154)(24,155)(25,156)(26,157)(27,158)(28,159)(29,160)(30,161)(31,162)(32,163)(33,164)(34,165)(35,166)(36,167)(37,168)(38,169)(39,170)(40,171)(41,172)(42,173)(43,174)(44,175)(45,176)(46,89)(47,90)(48,91)(49,92)(50,93)(51,94)(52,95)(53,96)(54,97)(55,98)(56,99)(57,100)(58,101)(59,102)(60,103)(61,104)(62,105)(63,106)(64,107)(65,108)(66,109)(67,110)(68,111)(69,112)(70,113)(71,114)(72,115)(73,116)(74,117)(75,118)(76,119)(77,120)(78,121)(79,122)(80,123)(81,124)(82,125)(83,126)(84,127)(85,128)(86,129)(87,130)(88,131) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176)], [(1,55),(2,54),(3,53),(4,52),(5,51),(6,50),(7,49),(8,48),(9,47),(10,46),(11,45),(12,44),(13,43),(14,42),(15,41),(16,40),(17,39),(18,38),(19,37),(20,36),(21,35),(22,34),(23,33),(24,32),(25,31),(26,30),(27,29),(56,88),(57,87),(58,86),(59,85),(60,84),(61,83),(62,82),(63,81),(64,80),(65,79),(66,78),(67,77),(68,76),(69,75),(70,74),(71,73),(89,97),(90,96),(91,95),(92,94),(98,176),(99,175),(100,174),(101,173),(102,172),(103,171),(104,170),(105,169),(106,168),(107,167),(108,166),(109,165),(110,164),(111,163),(112,162),(113,161),(114,160),(115,159),(116,158),(117,157),(118,156),(119,155),(120,154),(121,153),(122,152),(123,151),(124,150),(125,149),(126,148),(127,147),(128,146),(129,145),(130,144),(131,143),(132,142),(133,141),(134,140),(135,139),(136,138)], [(1,132),(2,133),(3,134),(4,135),(5,136),(6,137),(7,138),(8,139),(9,140),(10,141),(11,142),(12,143),(13,144),(14,145),(15,146),(16,147),(17,148),(18,149),(19,150),(20,151),(21,152),(22,153),(23,154),(24,155),(25,156),(26,157),(27,158),(28,159),(29,160),(30,161),(31,162),(32,163),(33,164),(34,165),(35,166),(36,167),(37,168),(38,169),(39,170),(40,171),(41,172),(42,173),(43,174),(44,175),(45,176),(46,89),(47,90),(48,91),(49,92),(50,93),(51,94),(52,95),(53,96),(54,97),(55,98),(56,99),(57,100),(58,101),(59,102),(60,103),(61,104),(62,105),(63,106),(64,107),(65,108),(66,109),(67,110),(68,111),(69,112),(70,113),(71,114),(72,115),(73,116),(74,117),(75,118),(76,119),(77,120),(78,121),(79,122),(80,123),(81,124),(82,125),(83,126),(84,127),(85,128),(86,129),(87,130),(88,131)]])
94 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 8A | 8B | 8C | 8D | 11A | ··· | 11E | 22A | ··· | 22O | 44A | ··· | 44T | 88A | ··· | 88AN |
order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 11 | ··· | 11 | 22 | ··· | 22 | 44 | ··· | 44 | 88 | ··· | 88 |
size | 1 | 1 | 2 | 44 | 44 | 1 | 1 | 2 | 44 | 44 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
94 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D11 | C4○D8 | D22 | D22 | D44 | D44 | D88⋊7C2 |
kernel | D88⋊7C2 | C8⋊D11 | D88 | Dic44 | C2×C88 | D44⋊5C2 | C44 | C2×C22 | C2×C8 | C11 | C8 | C2×C4 | C4 | C22 | C1 |
# reps | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 5 | 4 | 10 | 5 | 10 | 10 | 40 |
Matrix representation of D88⋊7C2 ►in GL2(𝔽89) generated by
67 | 12 |
14 | 53 |
40 | 73 |
61 | 49 |
28 | 48 |
56 | 61 |
G:=sub<GL(2,GF(89))| [67,14,12,53],[40,61,73,49],[28,56,48,61] >;
D88⋊7C2 in GAP, Magma, Sage, TeX
D_{88}\rtimes_7C_2
% in TeX
G:=Group("D88:7C2");
// GroupNames label
G:=SmallGroup(352,99);
// by ID
G=gap.SmallGroup(352,99);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-11,103,218,50,579,69,11525]);
// Polycyclic
G:=Group<a,b,c|a^88=b^2=c^2=1,b*a*b=a^-1,a*c=c*a,c*b*c=a^44*b>;
// generators/relations