metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D44⋊2C4, C2.2D88, C22.5D8, C44.45D4, C22.3SD16, C22.10D44, (C2×C88)⋊2C2, (C2×C8)⋊2D11, C44⋊C4⋊1C2, C4.8(C4×D11), C44.18(C2×C4), (C2×D44).1C2, (C2×C22).15D4, (C2×C4).71D22, C11⋊2(D4⋊C4), C2.8(D22⋊C4), C2.3(C8⋊D11), C4.20(C11⋊D4), C22.7(C22⋊C4), (C2×C44).83C22, SmallGroup(352,27)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2.D88
G = < a,b,c | a2=b88=1, c2=a, ab=ba, ac=ca, cbc-1=ab-1 >
(1 95)(2 96)(3 97)(4 98)(5 99)(6 100)(7 101)(8 102)(9 103)(10 104)(11 105)(12 106)(13 107)(14 108)(15 109)(16 110)(17 111)(18 112)(19 113)(20 114)(21 115)(22 116)(23 117)(24 118)(25 119)(26 120)(27 121)(28 122)(29 123)(30 124)(31 125)(32 126)(33 127)(34 128)(35 129)(36 130)(37 131)(38 132)(39 133)(40 134)(41 135)(42 136)(43 137)(44 138)(45 139)(46 140)(47 141)(48 142)(49 143)(50 144)(51 145)(52 146)(53 147)(54 148)(55 149)(56 150)(57 151)(58 152)(59 153)(60 154)(61 155)(62 156)(63 157)(64 158)(65 159)(66 160)(67 161)(68 162)(69 163)(70 164)(71 165)(72 166)(73 167)(74 168)(75 169)(76 170)(77 171)(78 172)(79 173)(80 174)(81 175)(82 176)(83 89)(84 90)(85 91)(86 92)(87 93)(88 94)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176)
(1 94 95 88)(2 87 96 93)(3 92 97 86)(4 85 98 91)(5 90 99 84)(6 83 100 89)(7 176 101 82)(8 81 102 175)(9 174 103 80)(10 79 104 173)(11 172 105 78)(12 77 106 171)(13 170 107 76)(14 75 108 169)(15 168 109 74)(16 73 110 167)(17 166 111 72)(18 71 112 165)(19 164 113 70)(20 69 114 163)(21 162 115 68)(22 67 116 161)(23 160 117 66)(24 65 118 159)(25 158 119 64)(26 63 120 157)(27 156 121 62)(28 61 122 155)(29 154 123 60)(30 59 124 153)(31 152 125 58)(32 57 126 151)(33 150 127 56)(34 55 128 149)(35 148 129 54)(36 53 130 147)(37 146 131 52)(38 51 132 145)(39 144 133 50)(40 49 134 143)(41 142 135 48)(42 47 136 141)(43 140 137 46)(44 45 138 139)
G:=sub<Sym(176)| (1,95)(2,96)(3,97)(4,98)(5,99)(6,100)(7,101)(8,102)(9,103)(10,104)(11,105)(12,106)(13,107)(14,108)(15,109)(16,110)(17,111)(18,112)(19,113)(20,114)(21,115)(22,116)(23,117)(24,118)(25,119)(26,120)(27,121)(28,122)(29,123)(30,124)(31,125)(32,126)(33,127)(34,128)(35,129)(36,130)(37,131)(38,132)(39,133)(40,134)(41,135)(42,136)(43,137)(44,138)(45,139)(46,140)(47,141)(48,142)(49,143)(50,144)(51,145)(52,146)(53,147)(54,148)(55,149)(56,150)(57,151)(58,152)(59,153)(60,154)(61,155)(62,156)(63,157)(64,158)(65,159)(66,160)(67,161)(68,162)(69,163)(70,164)(71,165)(72,166)(73,167)(74,168)(75,169)(76,170)(77,171)(78,172)(79,173)(80,174)(81,175)(82,176)(83,89)(84,90)(85,91)(86,92)(87,93)(88,94), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (1,94,95,88)(2,87,96,93)(3,92,97,86)(4,85,98,91)(5,90,99,84)(6,83,100,89)(7,176,101,82)(8,81,102,175)(9,174,103,80)(10,79,104,173)(11,172,105,78)(12,77,106,171)(13,170,107,76)(14,75,108,169)(15,168,109,74)(16,73,110,167)(17,166,111,72)(18,71,112,165)(19,164,113,70)(20,69,114,163)(21,162,115,68)(22,67,116,161)(23,160,117,66)(24,65,118,159)(25,158,119,64)(26,63,120,157)(27,156,121,62)(28,61,122,155)(29,154,123,60)(30,59,124,153)(31,152,125,58)(32,57,126,151)(33,150,127,56)(34,55,128,149)(35,148,129,54)(36,53,130,147)(37,146,131,52)(38,51,132,145)(39,144,133,50)(40,49,134,143)(41,142,135,48)(42,47,136,141)(43,140,137,46)(44,45,138,139)>;
G:=Group( (1,95)(2,96)(3,97)(4,98)(5,99)(6,100)(7,101)(8,102)(9,103)(10,104)(11,105)(12,106)(13,107)(14,108)(15,109)(16,110)(17,111)(18,112)(19,113)(20,114)(21,115)(22,116)(23,117)(24,118)(25,119)(26,120)(27,121)(28,122)(29,123)(30,124)(31,125)(32,126)(33,127)(34,128)(35,129)(36,130)(37,131)(38,132)(39,133)(40,134)(41,135)(42,136)(43,137)(44,138)(45,139)(46,140)(47,141)(48,142)(49,143)(50,144)(51,145)(52,146)(53,147)(54,148)(55,149)(56,150)(57,151)(58,152)(59,153)(60,154)(61,155)(62,156)(63,157)(64,158)(65,159)(66,160)(67,161)(68,162)(69,163)(70,164)(71,165)(72,166)(73,167)(74,168)(75,169)(76,170)(77,171)(78,172)(79,173)(80,174)(81,175)(82,176)(83,89)(84,90)(85,91)(86,92)(87,93)(88,94), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (1,94,95,88)(2,87,96,93)(3,92,97,86)(4,85,98,91)(5,90,99,84)(6,83,100,89)(7,176,101,82)(8,81,102,175)(9,174,103,80)(10,79,104,173)(11,172,105,78)(12,77,106,171)(13,170,107,76)(14,75,108,169)(15,168,109,74)(16,73,110,167)(17,166,111,72)(18,71,112,165)(19,164,113,70)(20,69,114,163)(21,162,115,68)(22,67,116,161)(23,160,117,66)(24,65,118,159)(25,158,119,64)(26,63,120,157)(27,156,121,62)(28,61,122,155)(29,154,123,60)(30,59,124,153)(31,152,125,58)(32,57,126,151)(33,150,127,56)(34,55,128,149)(35,148,129,54)(36,53,130,147)(37,146,131,52)(38,51,132,145)(39,144,133,50)(40,49,134,143)(41,142,135,48)(42,47,136,141)(43,140,137,46)(44,45,138,139) );
G=PermutationGroup([[(1,95),(2,96),(3,97),(4,98),(5,99),(6,100),(7,101),(8,102),(9,103),(10,104),(11,105),(12,106),(13,107),(14,108),(15,109),(16,110),(17,111),(18,112),(19,113),(20,114),(21,115),(22,116),(23,117),(24,118),(25,119),(26,120),(27,121),(28,122),(29,123),(30,124),(31,125),(32,126),(33,127),(34,128),(35,129),(36,130),(37,131),(38,132),(39,133),(40,134),(41,135),(42,136),(43,137),(44,138),(45,139),(46,140),(47,141),(48,142),(49,143),(50,144),(51,145),(52,146),(53,147),(54,148),(55,149),(56,150),(57,151),(58,152),(59,153),(60,154),(61,155),(62,156),(63,157),(64,158),(65,159),(66,160),(67,161),(68,162),(69,163),(70,164),(71,165),(72,166),(73,167),(74,168),(75,169),(76,170),(77,171),(78,172),(79,173),(80,174),(81,175),(82,176),(83,89),(84,90),(85,91),(86,92),(87,93),(88,94)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176)], [(1,94,95,88),(2,87,96,93),(3,92,97,86),(4,85,98,91),(5,90,99,84),(6,83,100,89),(7,176,101,82),(8,81,102,175),(9,174,103,80),(10,79,104,173),(11,172,105,78),(12,77,106,171),(13,170,107,76),(14,75,108,169),(15,168,109,74),(16,73,110,167),(17,166,111,72),(18,71,112,165),(19,164,113,70),(20,69,114,163),(21,162,115,68),(22,67,116,161),(23,160,117,66),(24,65,118,159),(25,158,119,64),(26,63,120,157),(27,156,121,62),(28,61,122,155),(29,154,123,60),(30,59,124,153),(31,152,125,58),(32,57,126,151),(33,150,127,56),(34,55,128,149),(35,148,129,54),(36,53,130,147),(37,146,131,52),(38,51,132,145),(39,144,133,50),(40,49,134,143),(41,142,135,48),(42,47,136,141),(43,140,137,46),(44,45,138,139)]])
94 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 8A | 8B | 8C | 8D | 11A | ··· | 11E | 22A | ··· | 22O | 44A | ··· | 44T | 88A | ··· | 88AN |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 11 | ··· | 11 | 22 | ··· | 22 | 44 | ··· | 44 | 88 | ··· | 88 |
size | 1 | 1 | 1 | 1 | 44 | 44 | 2 | 2 | 44 | 44 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
94 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C4 | D4 | D4 | D8 | SD16 | D11 | D22 | C4×D11 | C11⋊D4 | D44 | C8⋊D11 | D88 |
kernel | C2.D88 | C44⋊C4 | C2×C88 | C2×D44 | D44 | C44 | C2×C22 | C22 | C22 | C2×C8 | C2×C4 | C4 | C4 | C22 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 2 | 2 | 5 | 5 | 10 | 10 | 10 | 20 | 20 |
Matrix representation of C2.D88 ►in GL4(𝔽89) generated by
88 | 0 | 0 | 0 |
0 | 88 | 0 | 0 |
0 | 0 | 88 | 0 |
0 | 0 | 0 | 88 |
11 | 39 | 0 | 0 |
63 | 21 | 0 | 0 |
0 | 0 | 15 | 77 |
0 | 0 | 12 | 20 |
85 | 75 | 0 | 0 |
33 | 4 | 0 | 0 |
0 | 0 | 15 | 77 |
0 | 0 | 4 | 74 |
G:=sub<GL(4,GF(89))| [88,0,0,0,0,88,0,0,0,0,88,0,0,0,0,88],[11,63,0,0,39,21,0,0,0,0,15,12,0,0,77,20],[85,33,0,0,75,4,0,0,0,0,15,4,0,0,77,74] >;
C2.D88 in GAP, Magma, Sage, TeX
C_2.D_{88}
% in TeX
G:=Group("C2.D88");
// GroupNames label
G:=SmallGroup(352,27);
// by ID
G=gap.SmallGroup(352,27);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-11,73,79,362,86,11525]);
// Polycyclic
G:=Group<a,b,c|a^2=b^88=1,c^2=a,a*b=b*a,a*c=c*a,c*b*c^-1=a*b^-1>;
// generators/relations
Export