Extensions 1→N→G→Q→1 with N=C88 and Q=C4

Direct product G=N×Q with N=C88 and Q=C4
dρLabelID
C4×C88352C4xC88352,45

Semidirect products G=N:Q with N=C88 and Q=C4
extensionφ:Q→Aut NdρLabelID
C881C4 = C44.5Q8φ: C4/C2C2 ⊆ Aut C88352C88:1C4352,24
C882C4 = C44.4Q8φ: C4/C2C2 ⊆ Aut C88352C88:2C4352,23
C883C4 = C8×Dic11φ: C4/C2C2 ⊆ Aut C88352C88:3C4352,19
C884C4 = C88⋊C4φ: C4/C2C2 ⊆ Aut C88352C88:4C4352,21
C885C4 = C11×C2.D8φ: C4/C2C2 ⊆ Aut C88352C88:5C4352,56
C886C4 = C11×C4.Q8φ: C4/C2C2 ⊆ Aut C88352C88:6C4352,55
C887C4 = C11×C8⋊C4φ: C4/C2C2 ⊆ Aut C88352C88:7C4352,46

Non-split extensions G=N.Q with N=C88 and Q=C4
extensionφ:Q→Aut NdρLabelID
C88.1C4 = C88.C4φ: C4/C2C2 ⊆ Aut C881762C88.1C4352,25
C88.2C4 = C11⋊C32φ: C4/C2C2 ⊆ Aut C883522C88.2C4352,1
C88.3C4 = C2×C11⋊C16φ: C4/C2C2 ⊆ Aut C88352C88.3C4352,17
C88.4C4 = C44.C8φ: C4/C2C2 ⊆ Aut C881762C88.4C4352,18
C88.5C4 = C11×C8.C4φ: C4/C2C2 ⊆ Aut C881762C88.5C4352,57
C88.6C4 = C11×M5(2)φ: C4/C2C2 ⊆ Aut C881762C88.6C4352,59

׿
×
𝔽