direct product, cyclic, abelian, monomial
Aliases: C88, also denoted Z88, SmallGroup(88,2)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C88 |
C1 — C88 |
C1 — C88 |
Generators and relations for C88
G = < a | a88=1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)
G:=sub<Sym(88)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)]])
C88 is a maximal subgroup of
C11⋊C16 C88⋊C2 C8⋊D11 D88 Dic44
88 conjugacy classes
class | 1 | 2 | 4A | 4B | 8A | 8B | 8C | 8D | 11A | ··· | 11J | 22A | ··· | 22J | 44A | ··· | 44T | 88A | ··· | 88AN |
order | 1 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 11 | ··· | 11 | 22 | ··· | 22 | 44 | ··· | 44 | 88 | ··· | 88 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
88 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | ||||||
image | C1 | C2 | C4 | C8 | C11 | C22 | C44 | C88 |
kernel | C88 | C44 | C22 | C11 | C8 | C4 | C2 | C1 |
# reps | 1 | 1 | 2 | 4 | 10 | 10 | 20 | 40 |
Matrix representation of C88 ►in GL1(𝔽89) generated by
74 |
G:=sub<GL(1,GF(89))| [74] >;
C88 in GAP, Magma, Sage, TeX
C_{88}
% in TeX
G:=Group("C88");
// GroupNames label
G:=SmallGroup(88,2);
// by ID
G=gap.SmallGroup(88,2);
# by ID
G:=PCGroup([4,-2,-11,-2,-2,88,34]);
// Polycyclic
G:=Group<a|a^88=1>;
// generators/relations
Export