Extensions 1→N→G→Q→1 with N=C8xD11 and Q=C2

Direct product G=NxQ with N=C8xD11 and Q=C2
dρLabelID
C2xC8xD11176C2xC8xD11352,94

Semidirect products G=N:Q with N=C8xD11 and Q=C2
extensionφ:Q→Out NdρLabelID
(C8xD11):1C2 = D8xD11φ: C2/C1C2 ⊆ Out C8xD11884+(C8xD11):1C2352,105
(C8xD11):2C2 = D8:3D11φ: C2/C1C2 ⊆ Out C8xD111764-(C8xD11):2C2352,107
(C8xD11):3C2 = D88:5C2φ: C2/C1C2 ⊆ Out C8xD111764+(C8xD11):3C2352,114
(C8xD11):4C2 = SD16xD11φ: C2/C1C2 ⊆ Out C8xD11884(C8xD11):4C2352,108
(C8xD11):5C2 = Q8.D22φ: C2/C1C2 ⊆ Out C8xD111764(C8xD11):5C2352,111
(C8xD11):6C2 = D44.2C4φ: C2/C1C2 ⊆ Out C8xD111762(C8xD11):6C2352,96
(C8xD11):7C2 = M4(2)xD11φ: C2/C1C2 ⊆ Out C8xD11884(C8xD11):7C2352,101
(C8xD11):8C2 = D44.C4φ: C2/C1C2 ⊆ Out C8xD111764(C8xD11):8C2352,102

Non-split extensions G=N.Q with N=C8xD11 and Q=C2
extensionφ:Q→Out NdρLabelID
(C8xD11).1C2 = Q16xD11φ: C2/C1C2 ⊆ Out C8xD111764-(C8xD11).1C2352,112
(C8xD11).2C2 = D22.C8φ: C2/C1C2 ⊆ Out C8xD111762(C8xD11).2C2352,4
(C8xD11).3C2 = C16xD11φ: trivial image1762(C8xD11).3C2352,3

׿
x
:
Z
F
o
wr
Q
<