Copied to
clipboard

G = M4(2)×D11order 352 = 25·11

Direct product of M4(2) and D11

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: M4(2)×D11, C86D22, C886C22, C44.38C23, (C8×D11)⋊7C2, C88⋊C25C2, C11⋊C811C22, C44.12(C2×C4), (C4×D11).1C4, D22.6(C2×C4), C4.15(C4×D11), (C2×C4).45D22, C112(C2×M4(2)), C44.C45C2, C22.7(C4×D11), (C11×M4(2))⋊3C2, C22.15(C22×C4), (C2×C44).25C22, (C2×Dic11).6C4, Dic11.7(C2×C4), (C22×D11).4C4, C4.38(C22×D11), (C4×D11).18C22, (C2×C4×D11).4C2, C2.16(C2×C4×D11), (C2×C22).5(C2×C4), SmallGroup(352,101)

Series: Derived Chief Lower central Upper central

C1C22 — M4(2)×D11
C1C11C22C44C4×D11C2×C4×D11 — M4(2)×D11
C11C22 — M4(2)×D11
C1C4M4(2)

Generators and relations for M4(2)×D11
 G = < a,b,c,d | a8=b2=c11=d2=1, bab=a5, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 346 in 68 conjugacy classes, 39 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, C23, C11, C2×C8, M4(2), M4(2), C22×C4, D11, D11, C22, C22, C2×M4(2), Dic11, C44, D22, D22, C2×C22, C11⋊C8, C88, C4×D11, C2×Dic11, C2×C44, C22×D11, C8×D11, C88⋊C2, C44.C4, C11×M4(2), C2×C4×D11, M4(2)×D11
Quotients: C1, C2, C4, C22, C2×C4, C23, M4(2), C22×C4, D11, C2×M4(2), D22, C4×D11, C22×D11, C2×C4×D11, M4(2)×D11

Smallest permutation representation of M4(2)×D11
On 88 points
Generators in S88
(1 76 32 65 21 87 43 54)(2 77 33 66 22 88 44 55)(3 67 23 56 12 78 34 45)(4 68 24 57 13 79 35 46)(5 69 25 58 14 80 36 47)(6 70 26 59 15 81 37 48)(7 71 27 60 16 82 38 49)(8 72 28 61 17 83 39 50)(9 73 29 62 18 84 40 51)(10 74 30 63 19 85 41 52)(11 75 31 64 20 86 42 53)
(45 56)(46 57)(47 58)(48 59)(49 60)(50 61)(51 62)(52 63)(53 64)(54 65)(55 66)(67 78)(68 79)(69 80)(70 81)(71 82)(72 83)(73 84)(74 85)(75 86)(76 87)(77 88)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 22)(11 21)(23 40)(24 39)(25 38)(26 37)(27 36)(28 35)(29 34)(30 44)(31 43)(32 42)(33 41)(45 62)(46 61)(47 60)(48 59)(49 58)(50 57)(51 56)(52 66)(53 65)(54 64)(55 63)(67 84)(68 83)(69 82)(70 81)(71 80)(72 79)(73 78)(74 88)(75 87)(76 86)(77 85)

G:=sub<Sym(88)| (1,76,32,65,21,87,43,54)(2,77,33,66,22,88,44,55)(3,67,23,56,12,78,34,45)(4,68,24,57,13,79,35,46)(5,69,25,58,14,80,36,47)(6,70,26,59,15,81,37,48)(7,71,27,60,16,82,38,49)(8,72,28,61,17,83,39,50)(9,73,29,62,18,84,40,51)(10,74,30,63,19,85,41,52)(11,75,31,64,20,86,42,53), (45,56)(46,57)(47,58)(48,59)(49,60)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87)(77,88), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,22)(11,21)(23,40)(24,39)(25,38)(26,37)(27,36)(28,35)(29,34)(30,44)(31,43)(32,42)(33,41)(45,62)(46,61)(47,60)(48,59)(49,58)(50,57)(51,56)(52,66)(53,65)(54,64)(55,63)(67,84)(68,83)(69,82)(70,81)(71,80)(72,79)(73,78)(74,88)(75,87)(76,86)(77,85)>;

G:=Group( (1,76,32,65,21,87,43,54)(2,77,33,66,22,88,44,55)(3,67,23,56,12,78,34,45)(4,68,24,57,13,79,35,46)(5,69,25,58,14,80,36,47)(6,70,26,59,15,81,37,48)(7,71,27,60,16,82,38,49)(8,72,28,61,17,83,39,50)(9,73,29,62,18,84,40,51)(10,74,30,63,19,85,41,52)(11,75,31,64,20,86,42,53), (45,56)(46,57)(47,58)(48,59)(49,60)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87)(77,88), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,22)(11,21)(23,40)(24,39)(25,38)(26,37)(27,36)(28,35)(29,34)(30,44)(31,43)(32,42)(33,41)(45,62)(46,61)(47,60)(48,59)(49,58)(50,57)(51,56)(52,66)(53,65)(54,64)(55,63)(67,84)(68,83)(69,82)(70,81)(71,80)(72,79)(73,78)(74,88)(75,87)(76,86)(77,85) );

G=PermutationGroup([[(1,76,32,65,21,87,43,54),(2,77,33,66,22,88,44,55),(3,67,23,56,12,78,34,45),(4,68,24,57,13,79,35,46),(5,69,25,58,14,80,36,47),(6,70,26,59,15,81,37,48),(7,71,27,60,16,82,38,49),(8,72,28,61,17,83,39,50),(9,73,29,62,18,84,40,51),(10,74,30,63,19,85,41,52),(11,75,31,64,20,86,42,53)], [(45,56),(46,57),(47,58),(48,59),(49,60),(50,61),(51,62),(52,63),(53,64),(54,65),(55,66),(67,78),(68,79),(69,80),(70,81),(71,82),(72,83),(73,84),(74,85),(75,86),(76,87),(77,88)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,22),(11,21),(23,40),(24,39),(25,38),(26,37),(27,36),(28,35),(29,34),(30,44),(31,43),(32,42),(33,41),(45,62),(46,61),(47,60),(48,59),(49,58),(50,57),(51,56),(52,66),(53,65),(54,64),(55,63),(67,84),(68,83),(69,82),(70,81),(71,80),(72,79),(73,78),(74,88),(75,87),(76,86),(77,85)]])

70 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F8A8B8C8D8E8F8G8H11A···11E22A···22E22F···22J44A···44J44K···44O88A···88T
order1222224444448888888811···1122···2222···2244···4444···4488···88
size1121111221121111222222222222222···22···24···42···24···44···4

70 irreducible representations

dim1111111112222224
type+++++++++
imageC1C2C2C2C2C2C4C4C4M4(2)D11D22D22C4×D11C4×D11M4(2)×D11
kernelM4(2)×D11C8×D11C88⋊C2C44.C4C11×M4(2)C2×C4×D11C4×D11C2×Dic11C22×D11D11M4(2)C8C2×C4C4C22C1
# reps12211142245105101010

Matrix representation of M4(2)×D11 in GL4(𝔽89) generated by

88000
08800
00462
008243
,
1000
0100
0010
004388
,
0100
88700
0010
0001
,
0100
1000
00880
00088
G:=sub<GL(4,GF(89))| [88,0,0,0,0,88,0,0,0,0,46,82,0,0,2,43],[1,0,0,0,0,1,0,0,0,0,1,43,0,0,0,88],[0,88,0,0,1,7,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,88,0,0,0,0,88] >;

M4(2)×D11 in GAP, Magma, Sage, TeX

M_4(2)\times D_{11}
% in TeX

G:=Group("M4(2)xD11");
// GroupNames label

G:=SmallGroup(352,101);
// by ID

G=gap.SmallGroup(352,101);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-11,188,50,69,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^11=d^2=1,b*a*b=a^5,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽