direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D8×D11, C8⋊4D22, D88⋊4C2, D4⋊1D22, C88⋊2C22, D22.12D4, D44⋊1C22, C44.1C23, Dic11.3D4, C11⋊2(C2×D8), D4⋊D11⋊1C2, (D4×D11)⋊1C2, (C8×D11)⋊1C2, (C11×D8)⋊2C2, C11⋊C8⋊5C22, C2.15(D4×D11), C22.27(C2×D4), (D4×C11)⋊1C22, C4.1(C22×D11), (C4×D11).7C22, SmallGroup(352,105)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D8×D11
G = < a,b,c,d | a8=b2=c11=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 650 in 76 conjugacy classes, 29 normal (17 characteristic)
C1, C2, C2, C4, C4, C22, C8, C8, C2×C4, D4, D4, C23, C11, C2×C8, D8, D8, C2×D4, D11, D11, C22, C22, C2×D8, Dic11, C44, D22, D22, C2×C22, C11⋊C8, C88, C4×D11, D44, C11⋊D4, D4×C11, C22×D11, C8×D11, D88, D4⋊D11, C11×D8, D4×D11, D8×D11
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, D11, C2×D8, D22, C22×D11, D4×D11, D8×D11
(1 54 32 87 21 65 43 76)(2 55 33 88 22 66 44 77)(3 45 23 78 12 56 34 67)(4 46 24 79 13 57 35 68)(5 47 25 80 14 58 36 69)(6 48 26 81 15 59 37 70)(7 49 27 82 16 60 38 71)(8 50 28 83 17 61 39 72)(9 51 29 84 18 62 40 73)(10 52 30 85 19 63 41 74)(11 53 31 86 20 64 42 75)
(23 34)(24 35)(25 36)(26 37)(27 38)(28 39)(29 40)(30 41)(31 42)(32 43)(33 44)(45 67)(46 68)(47 69)(48 70)(49 71)(50 72)(51 73)(52 74)(53 75)(54 76)(55 77)(56 78)(57 79)(58 80)(59 81)(60 82)(61 83)(62 84)(63 85)(64 86)(65 87)(66 88)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)
(1 11)(2 10)(3 9)(4 8)(5 7)(12 18)(13 17)(14 16)(19 22)(20 21)(23 29)(24 28)(25 27)(30 33)(31 32)(34 40)(35 39)(36 38)(41 44)(42 43)(45 51)(46 50)(47 49)(52 55)(53 54)(56 62)(57 61)(58 60)(63 66)(64 65)(67 73)(68 72)(69 71)(74 77)(75 76)(78 84)(79 83)(80 82)(85 88)(86 87)
G:=sub<Sym(88)| (1,54,32,87,21,65,43,76)(2,55,33,88,22,66,44,77)(3,45,23,78,12,56,34,67)(4,46,24,79,13,57,35,68)(5,47,25,80,14,58,36,69)(6,48,26,81,15,59,37,70)(7,49,27,82,16,60,38,71)(8,50,28,83,17,61,39,72)(9,51,29,84,18,62,40,73)(10,52,30,85,19,63,41,74)(11,53,31,86,20,64,42,75), (23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44)(45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(53,75)(54,76)(55,77)(56,78)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86)(65,87)(66,88), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)(45,51)(46,50)(47,49)(52,55)(53,54)(56,62)(57,61)(58,60)(63,66)(64,65)(67,73)(68,72)(69,71)(74,77)(75,76)(78,84)(79,83)(80,82)(85,88)(86,87)>;
G:=Group( (1,54,32,87,21,65,43,76)(2,55,33,88,22,66,44,77)(3,45,23,78,12,56,34,67)(4,46,24,79,13,57,35,68)(5,47,25,80,14,58,36,69)(6,48,26,81,15,59,37,70)(7,49,27,82,16,60,38,71)(8,50,28,83,17,61,39,72)(9,51,29,84,18,62,40,73)(10,52,30,85,19,63,41,74)(11,53,31,86,20,64,42,75), (23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44)(45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(53,75)(54,76)(55,77)(56,78)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86)(65,87)(66,88), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)(45,51)(46,50)(47,49)(52,55)(53,54)(56,62)(57,61)(58,60)(63,66)(64,65)(67,73)(68,72)(69,71)(74,77)(75,76)(78,84)(79,83)(80,82)(85,88)(86,87) );
G=PermutationGroup([[(1,54,32,87,21,65,43,76),(2,55,33,88,22,66,44,77),(3,45,23,78,12,56,34,67),(4,46,24,79,13,57,35,68),(5,47,25,80,14,58,36,69),(6,48,26,81,15,59,37,70),(7,49,27,82,16,60,38,71),(8,50,28,83,17,61,39,72),(9,51,29,84,18,62,40,73),(10,52,30,85,19,63,41,74),(11,53,31,86,20,64,42,75)], [(23,34),(24,35),(25,36),(26,37),(27,38),(28,39),(29,40),(30,41),(31,42),(32,43),(33,44),(45,67),(46,68),(47,69),(48,70),(49,71),(50,72),(51,73),(52,74),(53,75),(54,76),(55,77),(56,78),(57,79),(58,80),(59,81),(60,82),(61,83),(62,84),(63,85),(64,86),(65,87),(66,88)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88)], [(1,11),(2,10),(3,9),(4,8),(5,7),(12,18),(13,17),(14,16),(19,22),(20,21),(23,29),(24,28),(25,27),(30,33),(31,32),(34,40),(35,39),(36,38),(41,44),(42,43),(45,51),(46,50),(47,49),(52,55),(53,54),(56,62),(57,61),(58,60),(63,66),(64,65),(67,73),(68,72),(69,71),(74,77),(75,76),(78,84),(79,83),(80,82),(85,88),(86,87)]])
49 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 8A | 8B | 8C | 8D | 11A | ··· | 11E | 22A | ··· | 22E | 22F | ··· | 22O | 44A | ··· | 44E | 88A | ··· | 88J |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 11 | ··· | 11 | 22 | ··· | 22 | 22 | ··· | 22 | 44 | ··· | 44 | 88 | ··· | 88 |
size | 1 | 1 | 4 | 4 | 11 | 11 | 44 | 44 | 2 | 22 | 2 | 2 | 22 | 22 | 2 | ··· | 2 | 2 | ··· | 2 | 8 | ··· | 8 | 4 | ··· | 4 | 4 | ··· | 4 |
49 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D8 | D11 | D22 | D22 | D4×D11 | D8×D11 |
kernel | D8×D11 | C8×D11 | D88 | D4⋊D11 | C11×D8 | D4×D11 | Dic11 | D22 | D11 | D8 | C8 | D4 | C2 | C1 |
# reps | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 4 | 5 | 5 | 10 | 5 | 10 |
Matrix representation of D8×D11 ►in GL4(𝔽89) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 57 | 32 |
0 | 0 | 57 | 57 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 88 |
18 | 1 | 0 | 0 |
76 | 29 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
29 | 88 | 0 | 0 |
39 | 60 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(89))| [1,0,0,0,0,1,0,0,0,0,57,57,0,0,32,57],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,88],[18,76,0,0,1,29,0,0,0,0,1,0,0,0,0,1],[29,39,0,0,88,60,0,0,0,0,1,0,0,0,0,1] >;
D8×D11 in GAP, Magma, Sage, TeX
D_8\times D_{11}
% in TeX
G:=Group("D8xD11");
// GroupNames label
G:=SmallGroup(352,105);
// by ID
G=gap.SmallGroup(352,105);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-11,116,297,159,69,11525]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^11=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations