Copied to
clipboard

G = D8×D11order 352 = 25·11

Direct product of D8 and D11

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D8×D11, C84D22, D884C2, D41D22, C882C22, D22.12D4, D441C22, C44.1C23, Dic11.3D4, C112(C2×D8), D4⋊D111C2, (D4×D11)⋊1C2, (C8×D11)⋊1C2, (C11×D8)⋊2C2, C11⋊C85C22, C2.15(D4×D11), C22.27(C2×D4), (D4×C11)⋊1C22, C4.1(C22×D11), (C4×D11).7C22, SmallGroup(352,105)

Series: Derived Chief Lower central Upper central

C1C44 — D8×D11
C1C11C22C44C4×D11D4×D11 — D8×D11
C11C22C44 — D8×D11
C1C2C4D8

Generators and relations for D8×D11
 G = < a,b,c,d | a8=b2=c11=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 650 in 76 conjugacy classes, 29 normal (17 characteristic)
C1, C2, C2, C4, C4, C22, C8, C8, C2×C4, D4, D4, C23, C11, C2×C8, D8, D8, C2×D4, D11, D11, C22, C22, C2×D8, Dic11, C44, D22, D22, C2×C22, C11⋊C8, C88, C4×D11, D44, C11⋊D4, D4×C11, C22×D11, C8×D11, D88, D4⋊D11, C11×D8, D4×D11, D8×D11
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, D11, C2×D8, D22, C22×D11, D4×D11, D8×D11

Smallest permutation representation of D8×D11
On 88 points
Generators in S88
(1 54 32 87 21 65 43 76)(2 55 33 88 22 66 44 77)(3 45 23 78 12 56 34 67)(4 46 24 79 13 57 35 68)(5 47 25 80 14 58 36 69)(6 48 26 81 15 59 37 70)(7 49 27 82 16 60 38 71)(8 50 28 83 17 61 39 72)(9 51 29 84 18 62 40 73)(10 52 30 85 19 63 41 74)(11 53 31 86 20 64 42 75)
(23 34)(24 35)(25 36)(26 37)(27 38)(28 39)(29 40)(30 41)(31 42)(32 43)(33 44)(45 67)(46 68)(47 69)(48 70)(49 71)(50 72)(51 73)(52 74)(53 75)(54 76)(55 77)(56 78)(57 79)(58 80)(59 81)(60 82)(61 83)(62 84)(63 85)(64 86)(65 87)(66 88)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)
(1 11)(2 10)(3 9)(4 8)(5 7)(12 18)(13 17)(14 16)(19 22)(20 21)(23 29)(24 28)(25 27)(30 33)(31 32)(34 40)(35 39)(36 38)(41 44)(42 43)(45 51)(46 50)(47 49)(52 55)(53 54)(56 62)(57 61)(58 60)(63 66)(64 65)(67 73)(68 72)(69 71)(74 77)(75 76)(78 84)(79 83)(80 82)(85 88)(86 87)

G:=sub<Sym(88)| (1,54,32,87,21,65,43,76)(2,55,33,88,22,66,44,77)(3,45,23,78,12,56,34,67)(4,46,24,79,13,57,35,68)(5,47,25,80,14,58,36,69)(6,48,26,81,15,59,37,70)(7,49,27,82,16,60,38,71)(8,50,28,83,17,61,39,72)(9,51,29,84,18,62,40,73)(10,52,30,85,19,63,41,74)(11,53,31,86,20,64,42,75), (23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44)(45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(53,75)(54,76)(55,77)(56,78)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86)(65,87)(66,88), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)(45,51)(46,50)(47,49)(52,55)(53,54)(56,62)(57,61)(58,60)(63,66)(64,65)(67,73)(68,72)(69,71)(74,77)(75,76)(78,84)(79,83)(80,82)(85,88)(86,87)>;

G:=Group( (1,54,32,87,21,65,43,76)(2,55,33,88,22,66,44,77)(3,45,23,78,12,56,34,67)(4,46,24,79,13,57,35,68)(5,47,25,80,14,58,36,69)(6,48,26,81,15,59,37,70)(7,49,27,82,16,60,38,71)(8,50,28,83,17,61,39,72)(9,51,29,84,18,62,40,73)(10,52,30,85,19,63,41,74)(11,53,31,86,20,64,42,75), (23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44)(45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(53,75)(54,76)(55,77)(56,78)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86)(65,87)(66,88), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)(45,51)(46,50)(47,49)(52,55)(53,54)(56,62)(57,61)(58,60)(63,66)(64,65)(67,73)(68,72)(69,71)(74,77)(75,76)(78,84)(79,83)(80,82)(85,88)(86,87) );

G=PermutationGroup([[(1,54,32,87,21,65,43,76),(2,55,33,88,22,66,44,77),(3,45,23,78,12,56,34,67),(4,46,24,79,13,57,35,68),(5,47,25,80,14,58,36,69),(6,48,26,81,15,59,37,70),(7,49,27,82,16,60,38,71),(8,50,28,83,17,61,39,72),(9,51,29,84,18,62,40,73),(10,52,30,85,19,63,41,74),(11,53,31,86,20,64,42,75)], [(23,34),(24,35),(25,36),(26,37),(27,38),(28,39),(29,40),(30,41),(31,42),(32,43),(33,44),(45,67),(46,68),(47,69),(48,70),(49,71),(50,72),(51,73),(52,74),(53,75),(54,76),(55,77),(56,78),(57,79),(58,80),(59,81),(60,82),(61,83),(62,84),(63,85),(64,86),(65,87),(66,88)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88)], [(1,11),(2,10),(3,9),(4,8),(5,7),(12,18),(13,17),(14,16),(19,22),(20,21),(23,29),(24,28),(25,27),(30,33),(31,32),(34,40),(35,39),(36,38),(41,44),(42,43),(45,51),(46,50),(47,49),(52,55),(53,54),(56,62),(57,61),(58,60),(63,66),(64,65),(67,73),(68,72),(69,71),(74,77),(75,76),(78,84),(79,83),(80,82),(85,88),(86,87)]])

49 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B8A8B8C8D11A···11E22A···22E22F···22O44A···44E88A···88J
order1222222244888811···1122···2222···2244···4488···88
size1144111144442222222222···22···28···84···44···4

49 irreducible representations

dim11111122222244
type++++++++++++++
imageC1C2C2C2C2C2D4D4D8D11D22D22D4×D11D8×D11
kernelD8×D11C8×D11D88D4⋊D11C11×D8D4×D11Dic11D22D11D8C8D4C2C1
# reps1112121145510510

Matrix representation of D8×D11 in GL4(𝔽89) generated by

1000
0100
005732
005757
,
1000
0100
0010
00088
,
18100
762900
0010
0001
,
298800
396000
0010
0001
G:=sub<GL(4,GF(89))| [1,0,0,0,0,1,0,0,0,0,57,57,0,0,32,57],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,88],[18,76,0,0,1,29,0,0,0,0,1,0,0,0,0,1],[29,39,0,0,88,60,0,0,0,0,1,0,0,0,0,1] >;

D8×D11 in GAP, Magma, Sage, TeX

D_8\times D_{11}
% in TeX

G:=Group("D8xD11");
// GroupNames label

G:=SmallGroup(352,105);
// by ID

G=gap.SmallGroup(352,105);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-11,116,297,159,69,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^11=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽