Extensions 1→N→G→Q→1 with N=C2×C8 and Q=C22

Direct product G=N×Q with N=C2×C8 and Q=C22
dρLabelID
C22×C88352C2^2xC88352,164

Semidirect products G=N:Q with N=C2×C8 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C2×C8)⋊1C22 = C11×C22⋊C8φ: C22/C11C2 ⊆ Aut C2×C8176(C2xC8):1C22352,47
(C2×C8)⋊2C22 = C11×D4⋊C4φ: C22/C11C2 ⊆ Aut C2×C8176(C2xC8):2C22352,51
(C2×C8)⋊3C22 = D8×C22φ: C22/C11C2 ⊆ Aut C2×C8176(C2xC8):3C22352,167
(C2×C8)⋊4C22 = C11×C4○D8φ: C22/C11C2 ⊆ Aut C2×C81762(C2xC8):4C22352,170
(C2×C8)⋊5C22 = SD16×C22φ: C22/C11C2 ⊆ Aut C2×C8176(C2xC8):5C22352,168
(C2×C8)⋊6C22 = M4(2)×C22φ: C22/C11C2 ⊆ Aut C2×C8176(C2xC8):6C22352,165
(C2×C8)⋊7C22 = C11×C8○D4φ: C22/C11C2 ⊆ Aut C2×C81762(C2xC8):7C22352,166

Non-split extensions G=N.Q with N=C2×C8 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C2×C8).1C22 = C11×Q8⋊C4φ: C22/C11C2 ⊆ Aut C2×C8352(C2xC8).1C22352,52
(C2×C8).2C22 = C11×C4⋊C8φ: C22/C11C2 ⊆ Aut C2×C8352(C2xC8).2C22352,54
(C2×C8).3C22 = C11×C2.D8φ: C22/C11C2 ⊆ Aut C2×C8352(C2xC8).3C22352,56
(C2×C8).4C22 = Q16×C22φ: C22/C11C2 ⊆ Aut C2×C8352(C2xC8).4C22352,169
(C2×C8).5C22 = C11×C8.C4φ: C22/C11C2 ⊆ Aut C2×C81762(C2xC8).5C22352,57
(C2×C8).6C22 = C11×C4.Q8φ: C22/C11C2 ⊆ Aut C2×C8352(C2xC8).6C22352,55
(C2×C8).7C22 = C11×C8⋊C4φ: C22/C11C2 ⊆ Aut C2×C8352(C2xC8).7C22352,46
(C2×C8).8C22 = C11×M5(2)φ: C22/C11C2 ⊆ Aut C2×C81762(C2xC8).8C22352,59

׿
×
𝔽