Extensions 1→N→G→Q→1 with N=C11⋊D4 and Q=C22

Direct product G=N×Q with N=C11⋊D4 and Q=C22

Semidirect products G=N:Q with N=C11⋊D4 and Q=C22
extensionφ:Q→Out NdρLabelID
C11⋊D41C22 = C2×D4×D11φ: C22/C2C2 ⊆ Out C11⋊D488C11:D4:1C2^2352,177
C11⋊D42C22 = C2×D42D11φ: C22/C2C2 ⊆ Out C11⋊D4176C11:D4:2C2^2352,178
C11⋊D43C22 = D46D22φ: C22/C2C2 ⊆ Out C11⋊D4884C11:D4:3C2^2352,179
C11⋊D44C22 = C4○D4×D11φ: C22/C2C2 ⊆ Out C11⋊D4884C11:D4:4C2^2352,183
C11⋊D45C22 = D48D22φ: C22/C2C2 ⊆ Out C11⋊D4884+C11:D4:5C2^2352,184
C11⋊D46C22 = C2×D445C2φ: trivial image176C11:D4:6C2^2352,176

Non-split extensions G=N.Q with N=C11⋊D4 and Q=C22
extensionφ:Q→Out NdρLabelID
C11⋊D4.C22 = D4.10D22φ: C22/C2C2 ⊆ Out C11⋊D41764-C11:D4.C2^2352,185
C11⋊D4.2C22 = Q8.10D22φ: trivial image1764C11:D4.2C2^2352,182