Copied to
clipboard

G = C2×D445C2order 352 = 25·11

Direct product of C2 and D445C2

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D445C2, C22.4C24, D4412C22, C44.43C23, D22.1C23, C23.26D22, Dic2211C22, Dic11.2C23, (C2×C4)⋊10D22, (C2×D44)⋊14C2, C221(C4○D4), (C22×C44)⋊8C2, (C22×C4)⋊6D11, (C2×C44)⋊13C22, (C4×D11)⋊6C22, C11⋊D46C22, C2.5(C23×D11), (C2×Dic22)⋊15C2, (C2×C22).65C23, C4.43(C22×D11), C22.5(C22×D11), (C22×C22).46C22, (C2×Dic11).43C22, (C22×D11).28C22, C111(C2×C4○D4), (C2×C4×D11)⋊15C2, (C2×C11⋊D4)⋊12C2, SmallGroup(352,176)

Series: Derived Chief Lower central Upper central

C1C22 — C2×D445C2
C1C11C22D22C22×D11C2×C4×D11 — C2×D445C2
C11C22 — C2×D445C2
C1C2×C4C22×C4

Generators and relations for C2×D445C2
 G = < a,b,c,d | a2=b44=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b-1, bd=db, dcd=b22c >

Subgroups: 858 in 164 conjugacy classes, 89 normal (17 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C11, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, D11, C22, C22, C22, C2×C4○D4, Dic11, C44, D22, D22, C2×C22, C2×C22, C2×C22, Dic22, C4×D11, D44, C2×Dic11, C11⋊D4, C2×C44, C2×C44, C22×D11, C22×C22, C2×Dic22, C2×C4×D11, C2×D44, D445C2, C2×C11⋊D4, C22×C44, C2×D445C2
Quotients: C1, C2, C22, C23, C4○D4, C24, D11, C2×C4○D4, D22, C22×D11, D445C2, C23×D11, C2×D445C2

Smallest permutation representation of C2×D445C2
On 176 points
Generators in S176
(1 49)(2 50)(3 51)(4 52)(5 53)(6 54)(7 55)(8 56)(9 57)(10 58)(11 59)(12 60)(13 61)(14 62)(15 63)(16 64)(17 65)(18 66)(19 67)(20 68)(21 69)(22 70)(23 71)(24 72)(25 73)(26 74)(27 75)(28 76)(29 77)(30 78)(31 79)(32 80)(33 81)(34 82)(35 83)(36 84)(37 85)(38 86)(39 87)(40 88)(41 45)(42 46)(43 47)(44 48)(89 147)(90 148)(91 149)(92 150)(93 151)(94 152)(95 153)(96 154)(97 155)(98 156)(99 157)(100 158)(101 159)(102 160)(103 161)(104 162)(105 163)(106 164)(107 165)(108 166)(109 167)(110 168)(111 169)(112 170)(113 171)(114 172)(115 173)(116 174)(117 175)(118 176)(119 133)(120 134)(121 135)(122 136)(123 137)(124 138)(125 139)(126 140)(127 141)(128 142)(129 143)(130 144)(131 145)(132 146)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176)
(1 48)(2 47)(3 46)(4 45)(5 88)(6 87)(7 86)(8 85)(9 84)(10 83)(11 82)(12 81)(13 80)(14 79)(15 78)(16 77)(17 76)(18 75)(19 74)(20 73)(21 72)(22 71)(23 70)(24 69)(25 68)(26 67)(27 66)(28 65)(29 64)(30 63)(31 62)(32 61)(33 60)(34 59)(35 58)(36 57)(37 56)(38 55)(39 54)(40 53)(41 52)(42 51)(43 50)(44 49)(89 166)(90 165)(91 164)(92 163)(93 162)(94 161)(95 160)(96 159)(97 158)(98 157)(99 156)(100 155)(101 154)(102 153)(103 152)(104 151)(105 150)(106 149)(107 148)(108 147)(109 146)(110 145)(111 144)(112 143)(113 142)(114 141)(115 140)(116 139)(117 138)(118 137)(119 136)(120 135)(121 134)(122 133)(123 176)(124 175)(125 174)(126 173)(127 172)(128 171)(129 170)(130 169)(131 168)(132 167)
(1 168)(2 169)(3 170)(4 171)(5 172)(6 173)(7 174)(8 175)(9 176)(10 133)(11 134)(12 135)(13 136)(14 137)(15 138)(16 139)(17 140)(18 141)(19 142)(20 143)(21 144)(22 145)(23 146)(24 147)(25 148)(26 149)(27 150)(28 151)(29 152)(30 153)(31 154)(32 155)(33 156)(34 157)(35 158)(36 159)(37 160)(38 161)(39 162)(40 163)(41 164)(42 165)(43 166)(44 167)(45 106)(46 107)(47 108)(48 109)(49 110)(50 111)(51 112)(52 113)(53 114)(54 115)(55 116)(56 117)(57 118)(58 119)(59 120)(60 121)(61 122)(62 123)(63 124)(64 125)(65 126)(66 127)(67 128)(68 129)(69 130)(70 131)(71 132)(72 89)(73 90)(74 91)(75 92)(76 93)(77 94)(78 95)(79 96)(80 97)(81 98)(82 99)(83 100)(84 101)(85 102)(86 103)(87 104)(88 105)

G:=sub<Sym(176)| (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,81)(34,82)(35,83)(36,84)(37,85)(38,86)(39,87)(40,88)(41,45)(42,46)(43,47)(44,48)(89,147)(90,148)(91,149)(92,150)(93,151)(94,152)(95,153)(96,154)(97,155)(98,156)(99,157)(100,158)(101,159)(102,160)(103,161)(104,162)(105,163)(106,164)(107,165)(108,166)(109,167)(110,168)(111,169)(112,170)(113,171)(114,172)(115,173)(116,174)(117,175)(118,176)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(127,141)(128,142)(129,143)(130,144)(131,145)(132,146), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (1,48)(2,47)(3,46)(4,45)(5,88)(6,87)(7,86)(8,85)(9,84)(10,83)(11,82)(12,81)(13,80)(14,79)(15,78)(16,77)(17,76)(18,75)(19,74)(20,73)(21,72)(22,71)(23,70)(24,69)(25,68)(26,67)(27,66)(28,65)(29,64)(30,63)(31,62)(32,61)(33,60)(34,59)(35,58)(36,57)(37,56)(38,55)(39,54)(40,53)(41,52)(42,51)(43,50)(44,49)(89,166)(90,165)(91,164)(92,163)(93,162)(94,161)(95,160)(96,159)(97,158)(98,157)(99,156)(100,155)(101,154)(102,153)(103,152)(104,151)(105,150)(106,149)(107,148)(108,147)(109,146)(110,145)(111,144)(112,143)(113,142)(114,141)(115,140)(116,139)(117,138)(118,137)(119,136)(120,135)(121,134)(122,133)(123,176)(124,175)(125,174)(126,173)(127,172)(128,171)(129,170)(130,169)(131,168)(132,167), (1,168)(2,169)(3,170)(4,171)(5,172)(6,173)(7,174)(8,175)(9,176)(10,133)(11,134)(12,135)(13,136)(14,137)(15,138)(16,139)(17,140)(18,141)(19,142)(20,143)(21,144)(22,145)(23,146)(24,147)(25,148)(26,149)(27,150)(28,151)(29,152)(30,153)(31,154)(32,155)(33,156)(34,157)(35,158)(36,159)(37,160)(38,161)(39,162)(40,163)(41,164)(42,165)(43,166)(44,167)(45,106)(46,107)(47,108)(48,109)(49,110)(50,111)(51,112)(52,113)(53,114)(54,115)(55,116)(56,117)(57,118)(58,119)(59,120)(60,121)(61,122)(62,123)(63,124)(64,125)(65,126)(66,127)(67,128)(68,129)(69,130)(70,131)(71,132)(72,89)(73,90)(74,91)(75,92)(76,93)(77,94)(78,95)(79,96)(80,97)(81,98)(82,99)(83,100)(84,101)(85,102)(86,103)(87,104)(88,105)>;

G:=Group( (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,81)(34,82)(35,83)(36,84)(37,85)(38,86)(39,87)(40,88)(41,45)(42,46)(43,47)(44,48)(89,147)(90,148)(91,149)(92,150)(93,151)(94,152)(95,153)(96,154)(97,155)(98,156)(99,157)(100,158)(101,159)(102,160)(103,161)(104,162)(105,163)(106,164)(107,165)(108,166)(109,167)(110,168)(111,169)(112,170)(113,171)(114,172)(115,173)(116,174)(117,175)(118,176)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(127,141)(128,142)(129,143)(130,144)(131,145)(132,146), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (1,48)(2,47)(3,46)(4,45)(5,88)(6,87)(7,86)(8,85)(9,84)(10,83)(11,82)(12,81)(13,80)(14,79)(15,78)(16,77)(17,76)(18,75)(19,74)(20,73)(21,72)(22,71)(23,70)(24,69)(25,68)(26,67)(27,66)(28,65)(29,64)(30,63)(31,62)(32,61)(33,60)(34,59)(35,58)(36,57)(37,56)(38,55)(39,54)(40,53)(41,52)(42,51)(43,50)(44,49)(89,166)(90,165)(91,164)(92,163)(93,162)(94,161)(95,160)(96,159)(97,158)(98,157)(99,156)(100,155)(101,154)(102,153)(103,152)(104,151)(105,150)(106,149)(107,148)(108,147)(109,146)(110,145)(111,144)(112,143)(113,142)(114,141)(115,140)(116,139)(117,138)(118,137)(119,136)(120,135)(121,134)(122,133)(123,176)(124,175)(125,174)(126,173)(127,172)(128,171)(129,170)(130,169)(131,168)(132,167), (1,168)(2,169)(3,170)(4,171)(5,172)(6,173)(7,174)(8,175)(9,176)(10,133)(11,134)(12,135)(13,136)(14,137)(15,138)(16,139)(17,140)(18,141)(19,142)(20,143)(21,144)(22,145)(23,146)(24,147)(25,148)(26,149)(27,150)(28,151)(29,152)(30,153)(31,154)(32,155)(33,156)(34,157)(35,158)(36,159)(37,160)(38,161)(39,162)(40,163)(41,164)(42,165)(43,166)(44,167)(45,106)(46,107)(47,108)(48,109)(49,110)(50,111)(51,112)(52,113)(53,114)(54,115)(55,116)(56,117)(57,118)(58,119)(59,120)(60,121)(61,122)(62,123)(63,124)(64,125)(65,126)(66,127)(67,128)(68,129)(69,130)(70,131)(71,132)(72,89)(73,90)(74,91)(75,92)(76,93)(77,94)(78,95)(79,96)(80,97)(81,98)(82,99)(83,100)(84,101)(85,102)(86,103)(87,104)(88,105) );

G=PermutationGroup([[(1,49),(2,50),(3,51),(4,52),(5,53),(6,54),(7,55),(8,56),(9,57),(10,58),(11,59),(12,60),(13,61),(14,62),(15,63),(16,64),(17,65),(18,66),(19,67),(20,68),(21,69),(22,70),(23,71),(24,72),(25,73),(26,74),(27,75),(28,76),(29,77),(30,78),(31,79),(32,80),(33,81),(34,82),(35,83),(36,84),(37,85),(38,86),(39,87),(40,88),(41,45),(42,46),(43,47),(44,48),(89,147),(90,148),(91,149),(92,150),(93,151),(94,152),(95,153),(96,154),(97,155),(98,156),(99,157),(100,158),(101,159),(102,160),(103,161),(104,162),(105,163),(106,164),(107,165),(108,166),(109,167),(110,168),(111,169),(112,170),(113,171),(114,172),(115,173),(116,174),(117,175),(118,176),(119,133),(120,134),(121,135),(122,136),(123,137),(124,138),(125,139),(126,140),(127,141),(128,142),(129,143),(130,144),(131,145),(132,146)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176)], [(1,48),(2,47),(3,46),(4,45),(5,88),(6,87),(7,86),(8,85),(9,84),(10,83),(11,82),(12,81),(13,80),(14,79),(15,78),(16,77),(17,76),(18,75),(19,74),(20,73),(21,72),(22,71),(23,70),(24,69),(25,68),(26,67),(27,66),(28,65),(29,64),(30,63),(31,62),(32,61),(33,60),(34,59),(35,58),(36,57),(37,56),(38,55),(39,54),(40,53),(41,52),(42,51),(43,50),(44,49),(89,166),(90,165),(91,164),(92,163),(93,162),(94,161),(95,160),(96,159),(97,158),(98,157),(99,156),(100,155),(101,154),(102,153),(103,152),(104,151),(105,150),(106,149),(107,148),(108,147),(109,146),(110,145),(111,144),(112,143),(113,142),(114,141),(115,140),(116,139),(117,138),(118,137),(119,136),(120,135),(121,134),(122,133),(123,176),(124,175),(125,174),(126,173),(127,172),(128,171),(129,170),(130,169),(131,168),(132,167)], [(1,168),(2,169),(3,170),(4,171),(5,172),(6,173),(7,174),(8,175),(9,176),(10,133),(11,134),(12,135),(13,136),(14,137),(15,138),(16,139),(17,140),(18,141),(19,142),(20,143),(21,144),(22,145),(23,146),(24,147),(25,148),(26,149),(27,150),(28,151),(29,152),(30,153),(31,154),(32,155),(33,156),(34,157),(35,158),(36,159),(37,160),(38,161),(39,162),(40,163),(41,164),(42,165),(43,166),(44,167),(45,106),(46,107),(47,108),(48,109),(49,110),(50,111),(51,112),(52,113),(53,114),(54,115),(55,116),(56,117),(57,118),(58,119),(59,120),(60,121),(61,122),(62,123),(63,124),(64,125),(65,126),(66,127),(67,128),(68,129),(69,130),(70,131),(71,132),(72,89),(73,90),(74,91),(75,92),(76,93),(77,94),(78,95),(79,96),(80,97),(81,98),(82,99),(83,100),(84,101),(85,102),(86,103),(87,104),(88,105)]])

100 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J11A···11E22A···22AI44A···44AN
order1222222222444444444411···1122···2244···44
size11112222222222111122222222222···22···22···2

100 irreducible representations

dim111111122222
type++++++++++
imageC1C2C2C2C2C2C2C4○D4D11D22D22D445C2
kernelC2×D445C2C2×Dic22C2×C4×D11C2×D44D445C2C2×C11⋊D4C22×C44C22C22×C4C2×C4C23C2
# reps11218214530540

Matrix representation of C2×D445C2 in GL3(𝔽89) generated by

8800
010
001
,
100
04416
07365
,
100
0653
01624
,
100
07641
04813
G:=sub<GL(3,GF(89))| [88,0,0,0,1,0,0,0,1],[1,0,0,0,44,73,0,16,65],[1,0,0,0,65,16,0,3,24],[1,0,0,0,76,48,0,41,13] >;

C2×D445C2 in GAP, Magma, Sage, TeX

C_2\times D_{44}\rtimes_5C_2
% in TeX

G:=Group("C2xD44:5C2");
// GroupNames label

G:=SmallGroup(352,176);
// by ID

G=gap.SmallGroup(352,176);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-11,86,579,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^44=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,b*d=d*b,d*c*d=b^22*c>;
// generators/relations

׿
×
𝔽