Copied to
clipboard

G = D46D22order 352 = 25·11

2nd semidirect product of D4 and D22 acting through Inn(D4)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D46D22, C232D22, D448C22, C22.7C24, C44.21C23, D22.3C23, C1112+ 1+4, Dic228C22, Dic11.4C23, (C2×C4)⋊3D22, (D4×C22)⋊7C2, (C2×D4)⋊7D11, (D4×D11)⋊4C2, (C2×C44)⋊3C22, D445C25C2, D42D114C2, (C4×D11)⋊1C22, (D4×C11)⋊7C22, C11⋊D43C22, (C2×C22).2C23, C2.8(C23×D11), (C22×C22)⋊5C22, C4.21(C22×D11), (C2×Dic11)⋊4C22, (C22×D11)⋊3C22, C22.6(C22×D11), (C2×C11⋊D4)⋊11C2, SmallGroup(352,179)

Series: Derived Chief Lower central Upper central

C1C22 — D46D22
C1C11C22D22C22×D11D4×D11 — D46D22
C11C22 — D46D22
C1C2C2×D4

Generators and relations for D46D22
 G = < a,b,c,d | a4=b2=c22=d2=1, bab=cac-1=a-1, ad=da, cbc-1=dbd=a2b, dcd=c-1 >

Subgroups: 970 in 166 conjugacy classes, 85 normal (11 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C11, C2×D4, C2×D4, C4○D4, D11, C22, C22, 2+ 1+4, Dic11, C44, D22, D22, C2×C22, C2×C22, C2×C22, Dic22, C4×D11, D44, C2×Dic11, C11⋊D4, C2×C44, D4×C11, C22×D11, C22×C22, D445C2, D4×D11, D42D11, C2×C11⋊D4, D4×C22, D46D22
Quotients: C1, C2, C22, C23, C24, D11, 2+ 1+4, D22, C22×D11, C23×D11, D46D22

Smallest permutation representation of D46D22
On 88 points
Generators in S88
(1 77 20 88)(2 67 21 78)(3 79 22 68)(4 69 12 80)(5 81 13 70)(6 71 14 82)(7 83 15 72)(8 73 16 84)(9 85 17 74)(10 75 18 86)(11 87 19 76)(23 60 34 49)(24 50 35 61)(25 62 36 51)(26 52 37 63)(27 64 38 53)(28 54 39 65)(29 66 40 55)(30 56 41 45)(31 46 42 57)(32 58 43 47)(33 48 44 59)
(1 57)(2 47)(3 59)(4 49)(5 61)(6 51)(7 63)(8 53)(9 65)(10 55)(11 45)(12 60)(13 50)(14 62)(15 52)(16 64)(17 54)(18 66)(19 56)(20 46)(21 58)(22 48)(23 80)(24 70)(25 82)(26 72)(27 84)(28 74)(29 86)(30 76)(31 88)(32 78)(33 68)(34 69)(35 81)(36 71)(37 83)(38 73)(39 85)(40 75)(41 87)(42 77)(43 67)(44 79)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)
(1 11)(2 10)(3 9)(4 8)(5 7)(12 16)(13 15)(17 22)(18 21)(19 20)(23 38)(24 37)(25 36)(26 35)(27 34)(28 44)(29 43)(30 42)(31 41)(32 40)(33 39)(45 46)(47 66)(48 65)(49 64)(50 63)(51 62)(52 61)(53 60)(54 59)(55 58)(56 57)(67 75)(68 74)(69 73)(70 72)(76 88)(77 87)(78 86)(79 85)(80 84)(81 83)

G:=sub<Sym(88)| (1,77,20,88)(2,67,21,78)(3,79,22,68)(4,69,12,80)(5,81,13,70)(6,71,14,82)(7,83,15,72)(8,73,16,84)(9,85,17,74)(10,75,18,86)(11,87,19,76)(23,60,34,49)(24,50,35,61)(25,62,36,51)(26,52,37,63)(27,64,38,53)(28,54,39,65)(29,66,40,55)(30,56,41,45)(31,46,42,57)(32,58,43,47)(33,48,44,59), (1,57)(2,47)(3,59)(4,49)(5,61)(6,51)(7,63)(8,53)(9,65)(10,55)(11,45)(12,60)(13,50)(14,62)(15,52)(16,64)(17,54)(18,66)(19,56)(20,46)(21,58)(22,48)(23,80)(24,70)(25,82)(26,72)(27,84)(28,74)(29,86)(30,76)(31,88)(32,78)(33,68)(34,69)(35,81)(36,71)(37,83)(38,73)(39,85)(40,75)(41,87)(42,77)(43,67)(44,79), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88), (1,11)(2,10)(3,9)(4,8)(5,7)(12,16)(13,15)(17,22)(18,21)(19,20)(23,38)(24,37)(25,36)(26,35)(27,34)(28,44)(29,43)(30,42)(31,41)(32,40)(33,39)(45,46)(47,66)(48,65)(49,64)(50,63)(51,62)(52,61)(53,60)(54,59)(55,58)(56,57)(67,75)(68,74)(69,73)(70,72)(76,88)(77,87)(78,86)(79,85)(80,84)(81,83)>;

G:=Group( (1,77,20,88)(2,67,21,78)(3,79,22,68)(4,69,12,80)(5,81,13,70)(6,71,14,82)(7,83,15,72)(8,73,16,84)(9,85,17,74)(10,75,18,86)(11,87,19,76)(23,60,34,49)(24,50,35,61)(25,62,36,51)(26,52,37,63)(27,64,38,53)(28,54,39,65)(29,66,40,55)(30,56,41,45)(31,46,42,57)(32,58,43,47)(33,48,44,59), (1,57)(2,47)(3,59)(4,49)(5,61)(6,51)(7,63)(8,53)(9,65)(10,55)(11,45)(12,60)(13,50)(14,62)(15,52)(16,64)(17,54)(18,66)(19,56)(20,46)(21,58)(22,48)(23,80)(24,70)(25,82)(26,72)(27,84)(28,74)(29,86)(30,76)(31,88)(32,78)(33,68)(34,69)(35,81)(36,71)(37,83)(38,73)(39,85)(40,75)(41,87)(42,77)(43,67)(44,79), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88), (1,11)(2,10)(3,9)(4,8)(5,7)(12,16)(13,15)(17,22)(18,21)(19,20)(23,38)(24,37)(25,36)(26,35)(27,34)(28,44)(29,43)(30,42)(31,41)(32,40)(33,39)(45,46)(47,66)(48,65)(49,64)(50,63)(51,62)(52,61)(53,60)(54,59)(55,58)(56,57)(67,75)(68,74)(69,73)(70,72)(76,88)(77,87)(78,86)(79,85)(80,84)(81,83) );

G=PermutationGroup([[(1,77,20,88),(2,67,21,78),(3,79,22,68),(4,69,12,80),(5,81,13,70),(6,71,14,82),(7,83,15,72),(8,73,16,84),(9,85,17,74),(10,75,18,86),(11,87,19,76),(23,60,34,49),(24,50,35,61),(25,62,36,51),(26,52,37,63),(27,64,38,53),(28,54,39,65),(29,66,40,55),(30,56,41,45),(31,46,42,57),(32,58,43,47),(33,48,44,59)], [(1,57),(2,47),(3,59),(4,49),(5,61),(6,51),(7,63),(8,53),(9,65),(10,55),(11,45),(12,60),(13,50),(14,62),(15,52),(16,64),(17,54),(18,66),(19,56),(20,46),(21,58),(22,48),(23,80),(24,70),(25,82),(26,72),(27,84),(28,74),(29,86),(30,76),(31,88),(32,78),(33,68),(34,69),(35,81),(36,71),(37,83),(38,73),(39,85),(40,75),(41,87),(42,77),(43,67),(44,79)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)], [(1,11),(2,10),(3,9),(4,8),(5,7),(12,16),(13,15),(17,22),(18,21),(19,20),(23,38),(24,37),(25,36),(26,35),(27,34),(28,44),(29,43),(30,42),(31,41),(32,40),(33,39),(45,46),(47,66),(48,65),(49,64),(50,63),(51,62),(52,61),(53,60),(54,59),(55,58),(56,57),(67,75),(68,74),(69,73),(70,72),(76,88),(77,87),(78,86),(79,85),(80,84),(81,83)]])

67 conjugacy classes

class 1 2A2B···2F2G2H2I2J4A4B4C4D4E4F11A···11E22A···22O22P···22AI44A···44J
order122···2222244444411···1122···2222···2244···44
size112···22222222222222222222···22···24···44···4

67 irreducible representations

dim111111222244
type+++++++++++
imageC1C2C2C2C2C2D11D22D22D222+ 1+4D46D22
kernelD46D22D445C2D4×D11D42D11C2×C11⋊D4D4×C22C2×D4C2×C4D4C23C11C1
# reps124441552010110

Matrix representation of D46D22 in GL4(𝔽89) generated by

4728851
61425054
7024323
1182846
,
88000
08800
59310
636801
,
2134152
5534214
001247
003422
,
34218410
34558775
001782
00372
G:=sub<GL(4,GF(89))| [47,61,70,11,28,42,2,8,85,50,43,28,1,54,23,46],[88,0,59,63,0,88,3,68,0,0,1,0,0,0,0,1],[21,55,0,0,34,34,0,0,1,2,12,34,52,14,47,22],[34,34,0,0,21,55,0,0,84,87,17,3,10,75,82,72] >;

D46D22 in GAP, Magma, Sage, TeX

D_4\rtimes_6D_{22}
% in TeX

G:=Group("D4:6D22");
// GroupNames label

G:=SmallGroup(352,179);
// by ID

G=gap.SmallGroup(352,179);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-11,188,579,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^22=d^2=1,b*a*b=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽