Extensions 1→N→G→Q→1 with N=C2×C3⋊S3 and Q=C10

Direct product G=N×Q with N=C2×C3⋊S3 and Q=C10
dρLabelID
C3⋊S3×C2×C10180C3:S3xC2xC10360,160

Semidirect products G=N:Q with N=C2×C3⋊S3 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2×C3⋊S3)⋊1C10 = C5×C3⋊D12φ: C10/C5C2 ⊆ Out C2×C3⋊S3604(C2xC3:S3):1C10360,75
(C2×C3⋊S3)⋊2C10 = C5×C12⋊S3φ: C10/C5C2 ⊆ Out C2×C3⋊S3180(C2xC3:S3):2C10360,107
(C2×C3⋊S3)⋊3C10 = C5×C327D4φ: C10/C5C2 ⊆ Out C2×C3⋊S3180(C2xC3:S3):3C10360,109
(C2×C3⋊S3)⋊4C10 = S32×C10φ: C10/C5C2 ⊆ Out C2×C3⋊S3604(C2xC3:S3):4C10360,153

Non-split extensions G=N.Q with N=C2×C3⋊S3 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2×C3⋊S3).1C10 = C5×C6.D6φ: C10/C5C2 ⊆ Out C2×C3⋊S3604(C2xC3:S3).1C10360,73
(C2×C3⋊S3).2C10 = C10×C32⋊C4φ: C10/C5C2 ⊆ Out C2×C3⋊S3604(C2xC3:S3).2C10360,148
(C2×C3⋊S3).3C10 = C3⋊S3×C20φ: trivial image180(C2xC3:S3).3C10360,106

׿
×
𝔽