Extensions 1→N→G→Q→1 with N=C3×C60 and Q=C2

Direct product G=N×Q with N=C3×C60 and Q=C2
dρLabelID
C6×C60360C6xC60360,115

Semidirect products G=N:Q with N=C3×C60 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C3×C60)⋊1C2 = C60⋊S3φ: C2/C1C2 ⊆ Aut C3×C60180(C3xC60):1C2360,112
(C3×C60)⋊2C2 = C3×D60φ: C2/C1C2 ⊆ Aut C3×C601202(C3xC60):2C2360,102
(C3×C60)⋊3C2 = C4×C3⋊D15φ: C2/C1C2 ⊆ Aut C3×C60180(C3xC60):3C2360,111
(C3×C60)⋊4C2 = C12×D15φ: C2/C1C2 ⊆ Aut C3×C601202(C3xC60):4C2360,101
(C3×C60)⋊5C2 = C32×D20φ: C2/C1C2 ⊆ Aut C3×C60180(C3xC60):5C2360,92
(C3×C60)⋊6C2 = C5×C12⋊S3φ: C2/C1C2 ⊆ Aut C3×C60180(C3xC60):6C2360,107
(C3×C60)⋊7C2 = C15×D12φ: C2/C1C2 ⊆ Aut C3×C601202(C3xC60):7C2360,97
(C3×C60)⋊8C2 = D5×C3×C12φ: C2/C1C2 ⊆ Aut C3×C60180(C3xC60):8C2360,91
(C3×C60)⋊9C2 = S3×C60φ: C2/C1C2 ⊆ Aut C3×C601202(C3xC60):9C2360,96
(C3×C60)⋊10C2 = C3⋊S3×C20φ: C2/C1C2 ⊆ Aut C3×C60180(C3xC60):10C2360,106
(C3×C60)⋊11C2 = D4×C3×C15φ: C2/C1C2 ⊆ Aut C3×C60180(C3xC60):11C2360,116

Non-split extensions G=N.Q with N=C3×C60 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C3×C60).1C2 = C12.D15φ: C2/C1C2 ⊆ Aut C3×C60360(C3xC60).1C2360,110
(C3×C60).2C2 = C3×Dic30φ: C2/C1C2 ⊆ Aut C3×C601202(C3xC60).2C2360,100
(C3×C60).3C2 = C60.S3φ: C2/C1C2 ⊆ Aut C3×C60360(C3xC60).3C2360,37
(C3×C60).4C2 = C3×C153C8φ: C2/C1C2 ⊆ Aut C3×C601202(C3xC60).4C2360,35
(C3×C60).5C2 = C32×Dic10φ: C2/C1C2 ⊆ Aut C3×C60360(C3xC60).5C2360,90
(C3×C60).6C2 = C5×C324Q8φ: C2/C1C2 ⊆ Aut C3×C60360(C3xC60).6C2360,105
(C3×C60).7C2 = C15×Dic6φ: C2/C1C2 ⊆ Aut C3×C601202(C3xC60).7C2360,95
(C3×C60).8C2 = C32×C52C8φ: C2/C1C2 ⊆ Aut C3×C60360(C3xC60).8C2360,33
(C3×C60).9C2 = C15×C3⋊C8φ: C2/C1C2 ⊆ Aut C3×C601202(C3xC60).9C2360,34
(C3×C60).10C2 = C5×C324C8φ: C2/C1C2 ⊆ Aut C3×C60360(C3xC60).10C2360,36
(C3×C60).11C2 = Q8×C3×C15φ: C2/C1C2 ⊆ Aut C3×C60360(C3xC60).11C2360,117

׿
×
𝔽