extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C60)⋊1C2 = C60⋊S3 | φ: C2/C1 → C2 ⊆ Aut C3×C60 | 180 | | (C3xC60):1C2 | 360,112 |
(C3×C60)⋊2C2 = C3×D60 | φ: C2/C1 → C2 ⊆ Aut C3×C60 | 120 | 2 | (C3xC60):2C2 | 360,102 |
(C3×C60)⋊3C2 = C4×C3⋊D15 | φ: C2/C1 → C2 ⊆ Aut C3×C60 | 180 | | (C3xC60):3C2 | 360,111 |
(C3×C60)⋊4C2 = C12×D15 | φ: C2/C1 → C2 ⊆ Aut C3×C60 | 120 | 2 | (C3xC60):4C2 | 360,101 |
(C3×C60)⋊5C2 = C32×D20 | φ: C2/C1 → C2 ⊆ Aut C3×C60 | 180 | | (C3xC60):5C2 | 360,92 |
(C3×C60)⋊6C2 = C5×C12⋊S3 | φ: C2/C1 → C2 ⊆ Aut C3×C60 | 180 | | (C3xC60):6C2 | 360,107 |
(C3×C60)⋊7C2 = C15×D12 | φ: C2/C1 → C2 ⊆ Aut C3×C60 | 120 | 2 | (C3xC60):7C2 | 360,97 |
(C3×C60)⋊8C2 = D5×C3×C12 | φ: C2/C1 → C2 ⊆ Aut C3×C60 | 180 | | (C3xC60):8C2 | 360,91 |
(C3×C60)⋊9C2 = S3×C60 | φ: C2/C1 → C2 ⊆ Aut C3×C60 | 120 | 2 | (C3xC60):9C2 | 360,96 |
(C3×C60)⋊10C2 = C3⋊S3×C20 | φ: C2/C1 → C2 ⊆ Aut C3×C60 | 180 | | (C3xC60):10C2 | 360,106 |
(C3×C60)⋊11C2 = D4×C3×C15 | φ: C2/C1 → C2 ⊆ Aut C3×C60 | 180 | | (C3xC60):11C2 | 360,116 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C60).1C2 = C12.D15 | φ: C2/C1 → C2 ⊆ Aut C3×C60 | 360 | | (C3xC60).1C2 | 360,110 |
(C3×C60).2C2 = C3×Dic30 | φ: C2/C1 → C2 ⊆ Aut C3×C60 | 120 | 2 | (C3xC60).2C2 | 360,100 |
(C3×C60).3C2 = C60.S3 | φ: C2/C1 → C2 ⊆ Aut C3×C60 | 360 | | (C3xC60).3C2 | 360,37 |
(C3×C60).4C2 = C3×C15⋊3C8 | φ: C2/C1 → C2 ⊆ Aut C3×C60 | 120 | 2 | (C3xC60).4C2 | 360,35 |
(C3×C60).5C2 = C32×Dic10 | φ: C2/C1 → C2 ⊆ Aut C3×C60 | 360 | | (C3xC60).5C2 | 360,90 |
(C3×C60).6C2 = C5×C32⋊4Q8 | φ: C2/C1 → C2 ⊆ Aut C3×C60 | 360 | | (C3xC60).6C2 | 360,105 |
(C3×C60).7C2 = C15×Dic6 | φ: C2/C1 → C2 ⊆ Aut C3×C60 | 120 | 2 | (C3xC60).7C2 | 360,95 |
(C3×C60).8C2 = C32×C5⋊2C8 | φ: C2/C1 → C2 ⊆ Aut C3×C60 | 360 | | (C3xC60).8C2 | 360,33 |
(C3×C60).9C2 = C15×C3⋊C8 | φ: C2/C1 → C2 ⊆ Aut C3×C60 | 120 | 2 | (C3xC60).9C2 | 360,34 |
(C3×C60).10C2 = C5×C32⋊4C8 | φ: C2/C1 → C2 ⊆ Aut C3×C60 | 360 | | (C3xC60).10C2 | 360,36 |
(C3×C60).11C2 = Q8×C3×C15 | φ: C2/C1 → C2 ⊆ Aut C3×C60 | 360 | | (C3xC60).11C2 | 360,117 |