Copied to
clipboard

G = C15×Dic6order 360 = 23·32·5

Direct product of C15 and Dic6

direct product, metacyclic, supersoluble, monomial

Aliases: C15×Dic6, C60.6C6, C12.1C30, C60.15S3, C30.67D6, Dic3.C30, C3⋊(Q8×C15), C4.(S3×C15), C154(C3×Q8), (C3×C15)⋊11Q8, C323(C5×Q8), C20.3(C3×S3), C2.3(S3×C30), C12.7(C5×S3), (C3×C60).7C2, C6.1(C2×C30), C10.13(S3×C6), C6.17(S3×C10), (C3×C12).2C10, C30.24(C2×C6), (C5×Dic3).2C6, (C3×C30).47C22, (Dic3×C15).4C2, (C3×Dic3).2C10, (C3×C6).6(C2×C10), SmallGroup(360,95)

Series: Derived Chief Lower central Upper central

C1C6 — C15×Dic6
C1C3C6C30C3×C30Dic3×C15 — C15×Dic6
C3C6 — C15×Dic6
C1C30C60

Generators and relations for C15×Dic6
 G = < a,b,c | a15=b12=1, c2=b6, ab=ba, ac=ca, cbc-1=b-1 >

Subgroups: 84 in 54 conjugacy classes, 36 normal (28 characteristic)
C1, C2, C3, C3, C4, C4, C5, C6, C6, Q8, C32, C10, Dic3, C12, C12, C15, C15, C3×C6, C20, C20, Dic6, C3×Q8, C30, C30, C3×Dic3, C3×C12, C5×Q8, C3×C15, C5×Dic3, C60, C60, C3×Dic6, C3×C30, C5×Dic6, Q8×C15, Dic3×C15, C3×C60, C15×Dic6
Quotients: C1, C2, C3, C22, C5, S3, C6, Q8, C10, D6, C2×C6, C15, C3×S3, C2×C10, Dic6, C3×Q8, C5×S3, C30, S3×C6, C5×Q8, S3×C10, C2×C30, C3×Dic6, S3×C15, C5×Dic6, Q8×C15, S3×C30, C15×Dic6

Smallest permutation representation of C15×Dic6
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 18 75 99 6 23 65 104 11 28 70 94)(2 19 61 100 7 24 66 105 12 29 71 95)(3 20 62 101 8 25 67 91 13 30 72 96)(4 21 63 102 9 26 68 92 14 16 73 97)(5 22 64 103 10 27 69 93 15 17 74 98)(31 56 77 110 41 51 87 120 36 46 82 115)(32 57 78 111 42 52 88 106 37 47 83 116)(33 58 79 112 43 53 89 107 38 48 84 117)(34 59 80 113 44 54 90 108 39 49 85 118)(35 60 81 114 45 55 76 109 40 50 86 119)
(1 40 65 81)(2 41 66 82)(3 42 67 83)(4 43 68 84)(5 44 69 85)(6 45 70 86)(7 31 71 87)(8 32 72 88)(9 33 73 89)(10 34 74 90)(11 35 75 76)(12 36 61 77)(13 37 62 78)(14 38 63 79)(15 39 64 80)(16 107 102 58)(17 108 103 59)(18 109 104 60)(19 110 105 46)(20 111 91 47)(21 112 92 48)(22 113 93 49)(23 114 94 50)(24 115 95 51)(25 116 96 52)(26 117 97 53)(27 118 98 54)(28 119 99 55)(29 120 100 56)(30 106 101 57)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,18,75,99,6,23,65,104,11,28,70,94)(2,19,61,100,7,24,66,105,12,29,71,95)(3,20,62,101,8,25,67,91,13,30,72,96)(4,21,63,102,9,26,68,92,14,16,73,97)(5,22,64,103,10,27,69,93,15,17,74,98)(31,56,77,110,41,51,87,120,36,46,82,115)(32,57,78,111,42,52,88,106,37,47,83,116)(33,58,79,112,43,53,89,107,38,48,84,117)(34,59,80,113,44,54,90,108,39,49,85,118)(35,60,81,114,45,55,76,109,40,50,86,119), (1,40,65,81)(2,41,66,82)(3,42,67,83)(4,43,68,84)(5,44,69,85)(6,45,70,86)(7,31,71,87)(8,32,72,88)(9,33,73,89)(10,34,74,90)(11,35,75,76)(12,36,61,77)(13,37,62,78)(14,38,63,79)(15,39,64,80)(16,107,102,58)(17,108,103,59)(18,109,104,60)(19,110,105,46)(20,111,91,47)(21,112,92,48)(22,113,93,49)(23,114,94,50)(24,115,95,51)(25,116,96,52)(26,117,97,53)(27,118,98,54)(28,119,99,55)(29,120,100,56)(30,106,101,57)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,18,75,99,6,23,65,104,11,28,70,94)(2,19,61,100,7,24,66,105,12,29,71,95)(3,20,62,101,8,25,67,91,13,30,72,96)(4,21,63,102,9,26,68,92,14,16,73,97)(5,22,64,103,10,27,69,93,15,17,74,98)(31,56,77,110,41,51,87,120,36,46,82,115)(32,57,78,111,42,52,88,106,37,47,83,116)(33,58,79,112,43,53,89,107,38,48,84,117)(34,59,80,113,44,54,90,108,39,49,85,118)(35,60,81,114,45,55,76,109,40,50,86,119), (1,40,65,81)(2,41,66,82)(3,42,67,83)(4,43,68,84)(5,44,69,85)(6,45,70,86)(7,31,71,87)(8,32,72,88)(9,33,73,89)(10,34,74,90)(11,35,75,76)(12,36,61,77)(13,37,62,78)(14,38,63,79)(15,39,64,80)(16,107,102,58)(17,108,103,59)(18,109,104,60)(19,110,105,46)(20,111,91,47)(21,112,92,48)(22,113,93,49)(23,114,94,50)(24,115,95,51)(25,116,96,52)(26,117,97,53)(27,118,98,54)(28,119,99,55)(29,120,100,56)(30,106,101,57) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,18,75,99,6,23,65,104,11,28,70,94),(2,19,61,100,7,24,66,105,12,29,71,95),(3,20,62,101,8,25,67,91,13,30,72,96),(4,21,63,102,9,26,68,92,14,16,73,97),(5,22,64,103,10,27,69,93,15,17,74,98),(31,56,77,110,41,51,87,120,36,46,82,115),(32,57,78,111,42,52,88,106,37,47,83,116),(33,58,79,112,43,53,89,107,38,48,84,117),(34,59,80,113,44,54,90,108,39,49,85,118),(35,60,81,114,45,55,76,109,40,50,86,119)], [(1,40,65,81),(2,41,66,82),(3,42,67,83),(4,43,68,84),(5,44,69,85),(6,45,70,86),(7,31,71,87),(8,32,72,88),(9,33,73,89),(10,34,74,90),(11,35,75,76),(12,36,61,77),(13,37,62,78),(14,38,63,79),(15,39,64,80),(16,107,102,58),(17,108,103,59),(18,109,104,60),(19,110,105,46),(20,111,91,47),(21,112,92,48),(22,113,93,49),(23,114,94,50),(24,115,95,51),(25,116,96,52),(26,117,97,53),(27,118,98,54),(28,119,99,55),(29,120,100,56),(30,106,101,57)]])

135 conjugacy classes

class 1  2 3A3B3C3D3E4A4B4C5A5B5C5D6A6B6C6D6E10A10B10C10D12A···12H12I12J12K12L15A···15H15I···15T20A20B20C20D20E···20L30A···30H30I···30T60A···60AF60AG···60AV
order12333334445555666661010101012···121212121215···1515···152020202020···2030···3030···3060···6060···60
size111122226611111122211112···266661···12···222226···61···12···22···26···6

135 irreducible representations

dim1111111111112222222222222222
type++++-+-
imageC1C2C2C3C5C6C6C10C10C15C30C30S3Q8D6C3×S3Dic6C3×Q8C5×S3S3×C6C5×Q8S3×C10C3×Dic6S3×C15C5×Dic6Q8×C15S3×C30C15×Dic6
kernelC15×Dic6Dic3×C15C3×C60C5×Dic6C3×Dic6C5×Dic3C60C3×Dic3C3×C12Dic6Dic3C12C60C3×C15C30C20C15C15C12C10C32C6C5C4C3C3C2C1
# reps121244284816811122242444888816

Matrix representation of C15×Dic6 in GL2(𝔽61) generated by

570
057
,
400
029
,
01
600
G:=sub<GL(2,GF(61))| [57,0,0,57],[40,0,0,29],[0,60,1,0] >;

C15×Dic6 in GAP, Magma, Sage, TeX

C_{15}\times {\rm Dic}_6
% in TeX

G:=Group("C15xDic6");
// GroupNames label

G:=SmallGroup(360,95);
// by ID

G=gap.SmallGroup(360,95);
# by ID

G:=PCGroup([6,-2,-2,-3,-5,-2,-3,360,745,367,8645]);
// Polycyclic

G:=Group<a,b,c|a^15=b^12=1,c^2=b^6,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

׿
×
𝔽