Copied to
clipboard

G = C3×C153C8order 360 = 23·32·5

Direct product of C3 and C153C8

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C3×C153C8, C153C24, C60.2C6, C30.5C12, C60.11S3, C12.8D15, C30.8Dic3, C6.4Dic15, C154(C3⋊C8), (C3×C15)⋊11C8, C6.(C3×Dic5), C20.2(C3×S3), (C3×C30).8C4, (C3×C60).4C2, C12.2(C3×D5), (C3×C12).3D5, C4.2(C3×D15), C2.(C3×Dic15), C323(C52C8), (C3×C6).2Dic5, C10.2(C3×Dic3), C52(C3×C3⋊C8), C3⋊(C3×C52C8), SmallGroup(360,35)

Series: Derived Chief Lower central Upper central

C1C15 — C3×C153C8
C1C5C15C30C60C3×C60 — C3×C153C8
C15 — C3×C153C8
C1C12

Generators and relations for C3×C153C8
 G = < a,b,c | a3=b15=c8=1, ab=ba, ac=ca, cbc-1=b-1 >

2C3
2C6
2C15
15C8
2C12
2C30
5C3⋊C8
15C24
3C52C8
2C60
5C3×C3⋊C8
3C3×C52C8

Smallest permutation representation of C3×C153C8
On 120 points
Generators in S120
(1 11 6)(2 12 7)(3 13 8)(4 14 9)(5 15 10)(16 26 21)(17 27 22)(18 28 23)(19 29 24)(20 30 25)(31 41 36)(32 42 37)(33 43 38)(34 44 39)(35 45 40)(46 56 51)(47 57 52)(48 58 53)(49 59 54)(50 60 55)(61 66 71)(62 67 72)(63 68 73)(64 69 74)(65 70 75)(76 81 86)(77 82 87)(78 83 88)(79 84 89)(80 85 90)(91 96 101)(92 97 102)(93 98 103)(94 99 104)(95 100 105)(106 111 116)(107 112 117)(108 113 118)(109 114 119)(110 115 120)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 110 54 80 27 91 40 62)(2 109 55 79 28 105 41 61)(3 108 56 78 29 104 42 75)(4 107 57 77 30 103 43 74)(5 106 58 76 16 102 44 73)(6 120 59 90 17 101 45 72)(7 119 60 89 18 100 31 71)(8 118 46 88 19 99 32 70)(9 117 47 87 20 98 33 69)(10 116 48 86 21 97 34 68)(11 115 49 85 22 96 35 67)(12 114 50 84 23 95 36 66)(13 113 51 83 24 94 37 65)(14 112 52 82 25 93 38 64)(15 111 53 81 26 92 39 63)

G:=sub<Sym(120)| (1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55)(61,66,71)(62,67,72)(63,68,73)(64,69,74)(65,70,75)(76,81,86)(77,82,87)(78,83,88)(79,84,89)(80,85,90)(91,96,101)(92,97,102)(93,98,103)(94,99,104)(95,100,105)(106,111,116)(107,112,117)(108,113,118)(109,114,119)(110,115,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,110,54,80,27,91,40,62)(2,109,55,79,28,105,41,61)(3,108,56,78,29,104,42,75)(4,107,57,77,30,103,43,74)(5,106,58,76,16,102,44,73)(6,120,59,90,17,101,45,72)(7,119,60,89,18,100,31,71)(8,118,46,88,19,99,32,70)(9,117,47,87,20,98,33,69)(10,116,48,86,21,97,34,68)(11,115,49,85,22,96,35,67)(12,114,50,84,23,95,36,66)(13,113,51,83,24,94,37,65)(14,112,52,82,25,93,38,64)(15,111,53,81,26,92,39,63)>;

G:=Group( (1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55)(61,66,71)(62,67,72)(63,68,73)(64,69,74)(65,70,75)(76,81,86)(77,82,87)(78,83,88)(79,84,89)(80,85,90)(91,96,101)(92,97,102)(93,98,103)(94,99,104)(95,100,105)(106,111,116)(107,112,117)(108,113,118)(109,114,119)(110,115,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,110,54,80,27,91,40,62)(2,109,55,79,28,105,41,61)(3,108,56,78,29,104,42,75)(4,107,57,77,30,103,43,74)(5,106,58,76,16,102,44,73)(6,120,59,90,17,101,45,72)(7,119,60,89,18,100,31,71)(8,118,46,88,19,99,32,70)(9,117,47,87,20,98,33,69)(10,116,48,86,21,97,34,68)(11,115,49,85,22,96,35,67)(12,114,50,84,23,95,36,66)(13,113,51,83,24,94,37,65)(14,112,52,82,25,93,38,64)(15,111,53,81,26,92,39,63) );

G=PermutationGroup([[(1,11,6),(2,12,7),(3,13,8),(4,14,9),(5,15,10),(16,26,21),(17,27,22),(18,28,23),(19,29,24),(20,30,25),(31,41,36),(32,42,37),(33,43,38),(34,44,39),(35,45,40),(46,56,51),(47,57,52),(48,58,53),(49,59,54),(50,60,55),(61,66,71),(62,67,72),(63,68,73),(64,69,74),(65,70,75),(76,81,86),(77,82,87),(78,83,88),(79,84,89),(80,85,90),(91,96,101),(92,97,102),(93,98,103),(94,99,104),(95,100,105),(106,111,116),(107,112,117),(108,113,118),(109,114,119),(110,115,120)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,110,54,80,27,91,40,62),(2,109,55,79,28,105,41,61),(3,108,56,78,29,104,42,75),(4,107,57,77,30,103,43,74),(5,106,58,76,16,102,44,73),(6,120,59,90,17,101,45,72),(7,119,60,89,18,100,31,71),(8,118,46,88,19,99,32,70),(9,117,47,87,20,98,33,69),(10,116,48,86,21,97,34,68),(11,115,49,85,22,96,35,67),(12,114,50,84,23,95,36,66),(13,113,51,83,24,94,37,65),(14,112,52,82,25,93,38,64),(15,111,53,81,26,92,39,63)]])

108 conjugacy classes

class 1  2 3A3B3C3D3E4A4B5A5B6A6B6C6D6E8A8B8C8D10A10B12A12B12C12D12E···12J15A···15P20A20B20C20D24A···24H30A···30P60A···60AF
order1233333445566666888810101212121212···1215···152020202024···2430···3060···60
size1111222112211222151515152211112···22···2222215···152···22···2

108 irreducible representations

dim11111111222222222222222222
type++++--+-
imageC1C2C3C4C6C8C12C24S3D5Dic3C3×S3Dic5C3⋊C8C3×D5D15C3×Dic3C52C8C3×Dic5Dic15C3×C3⋊C8C3×D15C3×C52C8C153C8C3×Dic15C3×C153C8
kernelC3×C153C8C3×C60C153C8C3×C30C60C3×C15C30C15C60C3×C12C30C20C3×C6C15C12C12C10C32C6C6C5C4C3C3C2C1
# reps112224481212224424444888816

Matrix representation of C3×C153C8 in GL5(𝔽241)

150000
015000
001500
00010
00001
,
10000
015000
0022500
000178190
00017911
,
2330000
00100
01000
00022491
0001817

G:=sub<GL(5,GF(241))| [15,0,0,0,0,0,15,0,0,0,0,0,15,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,15,0,0,0,0,0,225,0,0,0,0,0,178,179,0,0,0,190,11],[233,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,224,18,0,0,0,91,17] >;

C3×C153C8 in GAP, Magma, Sage, TeX

C_3\times C_{15}\rtimes_3C_8
% in TeX

G:=Group("C3xC15:3C8");
// GroupNames label

G:=SmallGroup(360,35);
// by ID

G=gap.SmallGroup(360,35);
# by ID

G:=PCGroup([6,-2,-3,-2,-2,-3,-5,36,50,1444,10373]);
// Polycyclic

G:=Group<a,b,c|a^3=b^15=c^8=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C3×C153C8 in TeX

׿
×
𝔽