d | ρ | Label | ID | ||
---|---|---|---|---|---|
S3×C60 | 120 | 2 | S3xC60 | 360,96 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C12⋊1(C5×S3) = C5×C12⋊S3 | φ: C5×S3/C15 → C2 ⊆ Aut C12 | 180 | C12:1(C5xS3) | 360,107 | |
C12⋊2(C5×S3) = C3⋊S3×C20 | φ: C5×S3/C15 → C2 ⊆ Aut C12 | 180 | C12:2(C5xS3) | 360,106 | |
C12⋊3(C5×S3) = C15×D12 | φ: C5×S3/C15 → C2 ⊆ Aut C12 | 120 | 2 | C12:3(C5xS3) | 360,97 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C12.1(C5×S3) = C5×Dic18 | φ: C5×S3/C15 → C2 ⊆ Aut C12 | 360 | 2 | C12.1(C5xS3) | 360,20 |
C12.2(C5×S3) = C5×D36 | φ: C5×S3/C15 → C2 ⊆ Aut C12 | 180 | 2 | C12.2(C5xS3) | 360,22 |
C12.3(C5×S3) = C5×C32⋊4Q8 | φ: C5×S3/C15 → C2 ⊆ Aut C12 | 360 | C12.3(C5xS3) | 360,105 | |
C12.4(C5×S3) = C5×C9⋊C8 | φ: C5×S3/C15 → C2 ⊆ Aut C12 | 360 | 2 | C12.4(C5xS3) | 360,1 |
C12.5(C5×S3) = D9×C20 | φ: C5×S3/C15 → C2 ⊆ Aut C12 | 180 | 2 | C12.5(C5xS3) | 360,21 |
C12.6(C5×S3) = C5×C32⋊4C8 | φ: C5×S3/C15 → C2 ⊆ Aut C12 | 360 | C12.6(C5xS3) | 360,36 | |
C12.7(C5×S3) = C15×Dic6 | φ: C5×S3/C15 → C2 ⊆ Aut C12 | 120 | 2 | C12.7(C5xS3) | 360,95 |
C12.8(C5×S3) = C15×C3⋊C8 | central extension (φ=1) | 120 | 2 | C12.8(C5xS3) | 360,34 |