Extensions 1→N→G→Q→1 with N=C2×C3⋊D15 and Q=C2

Direct product G=N×Q with N=C2×C3⋊D15 and Q=C2
dρLabelID
C22×C3⋊D15180C2^2xC3:D15360,161

Semidirect products G=N:Q with N=C2×C3⋊D15 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C3⋊D15)⋊1C2 = C60⋊S3φ: C2/C1C2 ⊆ Out C2×C3⋊D15180(C2xC3:D15):1C2360,112
(C2×C3⋊D15)⋊2C2 = C62⋊D5φ: C2/C1C2 ⊆ Out C2×C3⋊D15180(C2xC3:D15):2C2360,114
(C2×C3⋊D15)⋊3C2 = C327D20φ: C2/C1C2 ⊆ Out C2×C3⋊D15180(C2xC3:D15):3C2360,69
(C2×C3⋊D15)⋊4C2 = C15⋊D12φ: C2/C1C2 ⊆ Out C2×C3⋊D15180(C2xC3:D15):4C2360,70
(C2×C3⋊D15)⋊5C2 = C3⋊D60φ: C2/C1C2 ⊆ Out C2×C3⋊D15604+(C2xC3:D15):5C2360,81
(C2×C3⋊D15)⋊6C2 = D62D15φ: C2/C1C2 ⊆ Out C2×C3⋊D15604+(C2xC3:D15):6C2360,82
(C2×C3⋊D15)⋊7C2 = C2×D5×C3⋊S3φ: C2/C1C2 ⊆ Out C2×C3⋊D1590(C2xC3:D15):7C2360,152
(C2×C3⋊D15)⋊8C2 = C2×S3×D15φ: C2/C1C2 ⊆ Out C2×C3⋊D15604+(C2xC3:D15):8C2360,154

Non-split extensions G=N.Q with N=C2×C3⋊D15 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C3⋊D15).1C2 = C2×C32⋊F5φ: C2/C1C2 ⊆ Out C2×C3⋊D15604+(C2xC3:D15).1C2360,150
(C2×C3⋊D15).2C2 = C30.D6φ: C2/C1C2 ⊆ Out C2×C3⋊D15180(C2xC3:D15).2C2360,67
(C2×C3⋊D15).3C2 = C6.D30φ: C2/C1C2 ⊆ Out C2×C3⋊D15604+(C2xC3:D15).3C2360,79
(C2×C3⋊D15).4C2 = C4×C3⋊D15φ: trivial image180(C2xC3:D15).4C2360,111

׿
×
𝔽