Copied to
clipboard

G = C3⋊D60order 360 = 23·32·5

The semidirect product of C3 and D60 acting via D60/D30=C2

metabelian, supersoluble, monomial

Aliases: C32D60, D302S3, C152D12, Dic3⋊D15, C6.5D30, C322D20, C30.25D6, C10.5S32, (C3×C15)⋊11D4, C6.5(S3×D5), (C6×D15)⋊6C2, C2.5(S3×D15), (C3×C6).5D10, C51(C3⋊D12), C157(C3⋊D4), C31(C3⋊D20), (C5×Dic3)⋊3S3, (C3×Dic3)⋊1D5, (Dic3×C15)⋊1C2, (C3×C30).19C22, (C2×C3⋊D15)⋊5C2, SmallGroup(360,81)

Series: Derived Chief Lower central Upper central

C1C3×C30 — C3⋊D60
C1C5C15C3×C15C3×C30C6×D15 — C3⋊D60
C3×C15C3×C30 — C3⋊D60
C1C2

Generators and relations for C3⋊D60
 G = < a,b,c | a3=b60=c2=1, bab-1=cac=a-1, cbc=b-1 >

Subgroups: 676 in 74 conjugacy classes, 24 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, C5, S3, C6, C6, D4, C32, D5, C10, Dic3, C12, D6, C2×C6, C15, C15, C3×S3, C3⋊S3, C3×C6, C20, D10, D12, C3⋊D4, C3×D5, D15, C30, C30, C3×Dic3, S3×C6, C2×C3⋊S3, D20, C3×C15, C5×Dic3, C60, C6×D5, D30, D30, C3⋊D12, C3×D15, C3⋊D15, C3×C30, C3⋊D20, D60, Dic3×C15, C6×D15, C2×C3⋊D15, C3⋊D60
Quotients: C1, C2, C22, S3, D4, D5, D6, D10, D12, C3⋊D4, D15, S32, D20, S3×D5, D30, C3⋊D12, C3⋊D20, D60, S3×D15, C3⋊D60

Smallest permutation representation of C3⋊D60
On 60 points
Generators in S60
(1 21 41)(2 42 22)(3 23 43)(4 44 24)(5 25 45)(6 46 26)(7 27 47)(8 48 28)(9 29 49)(10 50 30)(11 31 51)(12 52 32)(13 33 53)(14 54 34)(15 35 55)(16 56 36)(17 37 57)(18 58 38)(19 39 59)(20 60 40)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 60)(17 59)(18 58)(19 57)(20 56)(21 55)(22 54)(23 53)(24 52)(25 51)(26 50)(27 49)(28 48)(29 47)(30 46)(31 45)(32 44)(33 43)(34 42)(35 41)(36 40)(37 39)

G:=sub<Sym(60)| (1,21,41)(2,42,22)(3,23,43)(4,44,24)(5,25,45)(6,46,26)(7,27,47)(8,48,28)(9,29,49)(10,50,30)(11,31,51)(12,52,32)(13,33,53)(14,54,34)(15,35,55)(16,56,36)(17,37,57)(18,58,38)(19,39,59)(20,60,40), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,60)(17,59)(18,58)(19,57)(20,56)(21,55)(22,54)(23,53)(24,52)(25,51)(26,50)(27,49)(28,48)(29,47)(30,46)(31,45)(32,44)(33,43)(34,42)(35,41)(36,40)(37,39)>;

G:=Group( (1,21,41)(2,42,22)(3,23,43)(4,44,24)(5,25,45)(6,46,26)(7,27,47)(8,48,28)(9,29,49)(10,50,30)(11,31,51)(12,52,32)(13,33,53)(14,54,34)(15,35,55)(16,56,36)(17,37,57)(18,58,38)(19,39,59)(20,60,40), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,60)(17,59)(18,58)(19,57)(20,56)(21,55)(22,54)(23,53)(24,52)(25,51)(26,50)(27,49)(28,48)(29,47)(30,46)(31,45)(32,44)(33,43)(34,42)(35,41)(36,40)(37,39) );

G=PermutationGroup([[(1,21,41),(2,42,22),(3,23,43),(4,44,24),(5,25,45),(6,46,26),(7,27,47),(8,48,28),(9,29,49),(10,50,30),(11,31,51),(12,52,32),(13,33,53),(14,54,34),(15,35,55),(16,56,36),(17,37,57),(18,58,38),(19,39,59),(20,60,40)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,60),(17,59),(18,58),(19,57),(20,56),(21,55),(22,54),(23,53),(24,52),(25,51),(26,50),(27,49),(28,48),(29,47),(30,46),(31,45),(32,44),(33,43),(34,42),(35,41),(36,40),(37,39)]])

51 conjugacy classes

class 1 2A2B2C3A3B3C 4 5A5B6A6B6C6D6E10A10B12A12B15A15B15C15D15E···15J20A20B20C20D30A30B30C30D30E···30J60A···60H
order122233345566666101012121515151515···15202020203030303030···3060···60
size1130902246222243030226622224···4666622224···46···6

51 irreducible representations

dim1111222222222222444444
type+++++++++++++++++++++
imageC1C2C2C2S3S3D4D5D6D10D12C3⋊D4D15D20D30D60S32S3×D5C3⋊D12C3⋊D20S3×D15C3⋊D60
kernelC3⋊D60Dic3×C15C6×D15C2×C3⋊D15C5×Dic3D30C3×C15C3×Dic3C30C3×C6C15C15Dic3C32C6C3C10C6C5C3C2C1
# reps1111111222224448121244

Matrix representation of C3⋊D60 in GL6(𝔽61)

100000
010000
001000
000100
00006060
000010
,
59590000
2320000
0006000
001100
000010
00006060
,
0600000
6000000
000100
001000
000010
00006060

G:=sub<GL(6,GF(61))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,1,0,0,0,0,60,0],[59,2,0,0,0,0,59,32,0,0,0,0,0,0,0,1,0,0,0,0,60,1,0,0,0,0,0,0,1,60,0,0,0,0,0,60],[0,60,0,0,0,0,60,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,60,0,0,0,0,0,60] >;

C3⋊D60 in GAP, Magma, Sage, TeX

C_3\rtimes D_{60}
% in TeX

G:=Group("C3:D60");
// GroupNames label

G:=SmallGroup(360,81);
// by ID

G=gap.SmallGroup(360,81);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-5,73,31,201,1444,10373]);
// Polycyclic

G:=Group<a,b,c|a^3=b^60=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽