Copied to
clipboard

G = C2×C3⋊D15order 180 = 22·32·5

Direct product of C2 and C3⋊D15

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C2×C3⋊D15, C6⋊D15, C301S3, C32D30, C156D6, C326D10, C10⋊(C3⋊S3), (C3×C6)⋊2D5, (C3×C30)⋊1C2, (C3×C15)⋊6C22, C52(C2×C3⋊S3), SmallGroup(180,36)

Series: Derived Chief Lower central Upper central

C1C3×C15 — C2×C3⋊D15
C1C5C15C3×C15C3⋊D15 — C2×C3⋊D15
C3×C15 — C2×C3⋊D15
C1C2

Generators and relations for C2×C3⋊D15
 G = < a,b,c,d | a2=b3=c15=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b-1, dcd=c-1 >

Subgroups: 420 in 60 conjugacy classes, 27 normal (9 characteristic)
C1, C2, C2, C3, C22, C5, S3, C6, C32, D5, C10, D6, C15, C3⋊S3, C3×C6, D10, D15, C30, C2×C3⋊S3, C3×C15, D30, C3⋊D15, C3×C30, C2×C3⋊D15
Quotients: C1, C2, C22, S3, D5, D6, C3⋊S3, D10, D15, C2×C3⋊S3, D30, C3⋊D15, C2×C3⋊D15

Smallest permutation representation of C2×C3⋊D15
On 90 points
Generators in S90
(1 46)(2 47)(3 48)(4 49)(5 50)(6 51)(7 52)(8 53)(9 54)(10 55)(11 56)(12 57)(13 58)(14 59)(15 60)(16 61)(17 62)(18 63)(19 64)(20 65)(21 66)(22 67)(23 68)(24 69)(25 70)(26 71)(27 72)(28 73)(29 74)(30 75)(31 85)(32 86)(33 87)(34 88)(35 89)(36 90)(37 76)(38 77)(39 78)(40 79)(41 80)(42 81)(43 82)(44 83)(45 84)
(1 39 19)(2 40 20)(3 41 21)(4 42 22)(5 43 23)(6 44 24)(7 45 25)(8 31 26)(9 32 27)(10 33 28)(11 34 29)(12 35 30)(13 36 16)(14 37 17)(15 38 18)(46 78 64)(47 79 65)(48 80 66)(49 81 67)(50 82 68)(51 83 69)(52 84 70)(53 85 71)(54 86 72)(55 87 73)(56 88 74)(57 89 75)(58 90 61)(59 76 62)(60 77 63)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)
(1 60)(2 59)(3 58)(4 57)(5 56)(6 55)(7 54)(8 53)(9 52)(10 51)(11 50)(12 49)(13 48)(14 47)(15 46)(16 80)(17 79)(18 78)(19 77)(20 76)(21 90)(22 89)(23 88)(24 87)(25 86)(26 85)(27 84)(28 83)(29 82)(30 81)(31 71)(32 70)(33 69)(34 68)(35 67)(36 66)(37 65)(38 64)(39 63)(40 62)(41 61)(42 75)(43 74)(44 73)(45 72)

G:=sub<Sym(90)| (1,46)(2,47)(3,48)(4,49)(5,50)(6,51)(7,52)(8,53)(9,54)(10,55)(11,56)(12,57)(13,58)(14,59)(15,60)(16,61)(17,62)(18,63)(19,64)(20,65)(21,66)(22,67)(23,68)(24,69)(25,70)(26,71)(27,72)(28,73)(29,74)(30,75)(31,85)(32,86)(33,87)(34,88)(35,89)(36,90)(37,76)(38,77)(39,78)(40,79)(41,80)(42,81)(43,82)(44,83)(45,84), (1,39,19)(2,40,20)(3,41,21)(4,42,22)(5,43,23)(6,44,24)(7,45,25)(8,31,26)(9,32,27)(10,33,28)(11,34,29)(12,35,30)(13,36,16)(14,37,17)(15,38,18)(46,78,64)(47,79,65)(48,80,66)(49,81,67)(50,82,68)(51,83,69)(52,84,70)(53,85,71)(54,86,72)(55,87,73)(56,88,74)(57,89,75)(58,90,61)(59,76,62)(60,77,63), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90), (1,60)(2,59)(3,58)(4,57)(5,56)(6,55)(7,54)(8,53)(9,52)(10,51)(11,50)(12,49)(13,48)(14,47)(15,46)(16,80)(17,79)(18,78)(19,77)(20,76)(21,90)(22,89)(23,88)(24,87)(25,86)(26,85)(27,84)(28,83)(29,82)(30,81)(31,71)(32,70)(33,69)(34,68)(35,67)(36,66)(37,65)(38,64)(39,63)(40,62)(41,61)(42,75)(43,74)(44,73)(45,72)>;

G:=Group( (1,46)(2,47)(3,48)(4,49)(5,50)(6,51)(7,52)(8,53)(9,54)(10,55)(11,56)(12,57)(13,58)(14,59)(15,60)(16,61)(17,62)(18,63)(19,64)(20,65)(21,66)(22,67)(23,68)(24,69)(25,70)(26,71)(27,72)(28,73)(29,74)(30,75)(31,85)(32,86)(33,87)(34,88)(35,89)(36,90)(37,76)(38,77)(39,78)(40,79)(41,80)(42,81)(43,82)(44,83)(45,84), (1,39,19)(2,40,20)(3,41,21)(4,42,22)(5,43,23)(6,44,24)(7,45,25)(8,31,26)(9,32,27)(10,33,28)(11,34,29)(12,35,30)(13,36,16)(14,37,17)(15,38,18)(46,78,64)(47,79,65)(48,80,66)(49,81,67)(50,82,68)(51,83,69)(52,84,70)(53,85,71)(54,86,72)(55,87,73)(56,88,74)(57,89,75)(58,90,61)(59,76,62)(60,77,63), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90), (1,60)(2,59)(3,58)(4,57)(5,56)(6,55)(7,54)(8,53)(9,52)(10,51)(11,50)(12,49)(13,48)(14,47)(15,46)(16,80)(17,79)(18,78)(19,77)(20,76)(21,90)(22,89)(23,88)(24,87)(25,86)(26,85)(27,84)(28,83)(29,82)(30,81)(31,71)(32,70)(33,69)(34,68)(35,67)(36,66)(37,65)(38,64)(39,63)(40,62)(41,61)(42,75)(43,74)(44,73)(45,72) );

G=PermutationGroup([[(1,46),(2,47),(3,48),(4,49),(5,50),(6,51),(7,52),(8,53),(9,54),(10,55),(11,56),(12,57),(13,58),(14,59),(15,60),(16,61),(17,62),(18,63),(19,64),(20,65),(21,66),(22,67),(23,68),(24,69),(25,70),(26,71),(27,72),(28,73),(29,74),(30,75),(31,85),(32,86),(33,87),(34,88),(35,89),(36,90),(37,76),(38,77),(39,78),(40,79),(41,80),(42,81),(43,82),(44,83),(45,84)], [(1,39,19),(2,40,20),(3,41,21),(4,42,22),(5,43,23),(6,44,24),(7,45,25),(8,31,26),(9,32,27),(10,33,28),(11,34,29),(12,35,30),(13,36,16),(14,37,17),(15,38,18),(46,78,64),(47,79,65),(48,80,66),(49,81,67),(50,82,68),(51,83,69),(52,84,70),(53,85,71),(54,86,72),(55,87,73),(56,88,74),(57,89,75),(58,90,61),(59,76,62),(60,77,63)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)], [(1,60),(2,59),(3,58),(4,57),(5,56),(6,55),(7,54),(8,53),(9,52),(10,51),(11,50),(12,49),(13,48),(14,47),(15,46),(16,80),(17,79),(18,78),(19,77),(20,76),(21,90),(22,89),(23,88),(24,87),(25,86),(26,85),(27,84),(28,83),(29,82),(30,81),(31,71),(32,70),(33,69),(34,68),(35,67),(36,66),(37,65),(38,64),(39,63),(40,62),(41,61),(42,75),(43,74),(44,73),(45,72)]])

C2×C3⋊D15 is a maximal subgroup of
C30.D6  C327D20  C15⋊D12  C6.D30  C3⋊D60  D62D15  C60⋊S3  C62⋊D5  C2×D5×C3⋊S3  C2×S3×D15
C2×C3⋊D15 is a maximal quotient of
C12.D15  C60⋊S3  C62⋊D5

48 conjugacy classes

class 1 2A2B2C3A3B3C3D5A5B6A6B6C6D10A10B15A···15P30A···30P
order12223333556666101015···1530···30
size1145452222222222222···22···2

48 irreducible representations

dim111222222
type+++++++++
imageC1C2C2S3D5D6D10D15D30
kernelC2×C3⋊D15C3⋊D15C3×C30C30C3×C6C15C32C6C3
# reps12142421616

Matrix representation of C2×C3⋊D15 in GL6(𝔽31)

3000000
0300000
001000
000100
000010
000001
,
100000
010000
00292500
0016100
0000193
00002811
,
13130000
18300000
001000
000100
00002227
0000412
,
27220000
1240000
001000
00153000
00001818
0000113

G:=sub<GL(6,GF(31))| [30,0,0,0,0,0,0,30,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,29,16,0,0,0,0,25,1,0,0,0,0,0,0,19,28,0,0,0,0,3,11],[13,18,0,0,0,0,13,30,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,22,4,0,0,0,0,27,12],[27,12,0,0,0,0,22,4,0,0,0,0,0,0,1,15,0,0,0,0,0,30,0,0,0,0,0,0,18,1,0,0,0,0,18,13] >;

C2×C3⋊D15 in GAP, Magma, Sage, TeX

C_2\times C_3\rtimes D_{15}
% in TeX

G:=Group("C2xC3:D15");
// GroupNames label

G:=SmallGroup(180,36);
// by ID

G=gap.SmallGroup(180,36);
# by ID

G:=PCGroup([5,-2,-2,-3,-3,-5,122,483,3604]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^3=c^15=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽