Copied to
clipboard

G = C2×C3⋊D15order 180 = 22·32·5

Direct product of C2 and C3⋊D15

Aliases: C2×C3⋊D15, C6⋊D15, C301S3, C32D30, C156D6, C326D10, C10⋊(C3⋊S3), (C3×C6)⋊2D5, (C3×C30)⋊1C2, (C3×C15)⋊6C22, C52(C2×C3⋊S3), SmallGroup(180,36)

Series: Derived Chief Lower central Upper central

 Derived series C1 — C3×C15 — C2×C3⋊D15
 Chief series C1 — C5 — C15 — C3×C15 — C3⋊D15 — C2×C3⋊D15
 Lower central C3×C15 — C2×C3⋊D15
 Upper central C1 — C2

Generators and relations for C2×C3⋊D15
G = < a,b,c,d | a2=b3=c15=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b-1, dcd=c-1 >

Subgroups: 420 in 60 conjugacy classes, 27 normal (9 characteristic)
C1, C2, C2, C3, C22, C5, S3, C6, C32, D5, C10, D6, C15, C3⋊S3, C3×C6, D10, D15, C30, C2×C3⋊S3, C3×C15, D30, C3⋊D15, C3×C30, C2×C3⋊D15
Quotients: C1, C2, C22, S3, D5, D6, C3⋊S3, D10, D15, C2×C3⋊S3, D30, C3⋊D15, C2×C3⋊D15

Smallest permutation representation of C2×C3⋊D15
On 90 points
Generators in S90
(1 46)(2 47)(3 48)(4 49)(5 50)(6 51)(7 52)(8 53)(9 54)(10 55)(11 56)(12 57)(13 58)(14 59)(15 60)(16 61)(17 62)(18 63)(19 64)(20 65)(21 66)(22 67)(23 68)(24 69)(25 70)(26 71)(27 72)(28 73)(29 74)(30 75)(31 85)(32 86)(33 87)(34 88)(35 89)(36 90)(37 76)(38 77)(39 78)(40 79)(41 80)(42 81)(43 82)(44 83)(45 84)
(1 39 19)(2 40 20)(3 41 21)(4 42 22)(5 43 23)(6 44 24)(7 45 25)(8 31 26)(9 32 27)(10 33 28)(11 34 29)(12 35 30)(13 36 16)(14 37 17)(15 38 18)(46 78 64)(47 79 65)(48 80 66)(49 81 67)(50 82 68)(51 83 69)(52 84 70)(53 85 71)(54 86 72)(55 87 73)(56 88 74)(57 89 75)(58 90 61)(59 76 62)(60 77 63)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)
(1 60)(2 59)(3 58)(4 57)(5 56)(6 55)(7 54)(8 53)(9 52)(10 51)(11 50)(12 49)(13 48)(14 47)(15 46)(16 80)(17 79)(18 78)(19 77)(20 76)(21 90)(22 89)(23 88)(24 87)(25 86)(26 85)(27 84)(28 83)(29 82)(30 81)(31 71)(32 70)(33 69)(34 68)(35 67)(36 66)(37 65)(38 64)(39 63)(40 62)(41 61)(42 75)(43 74)(44 73)(45 72)

G:=sub<Sym(90)| (1,46)(2,47)(3,48)(4,49)(5,50)(6,51)(7,52)(8,53)(9,54)(10,55)(11,56)(12,57)(13,58)(14,59)(15,60)(16,61)(17,62)(18,63)(19,64)(20,65)(21,66)(22,67)(23,68)(24,69)(25,70)(26,71)(27,72)(28,73)(29,74)(30,75)(31,85)(32,86)(33,87)(34,88)(35,89)(36,90)(37,76)(38,77)(39,78)(40,79)(41,80)(42,81)(43,82)(44,83)(45,84), (1,39,19)(2,40,20)(3,41,21)(4,42,22)(5,43,23)(6,44,24)(7,45,25)(8,31,26)(9,32,27)(10,33,28)(11,34,29)(12,35,30)(13,36,16)(14,37,17)(15,38,18)(46,78,64)(47,79,65)(48,80,66)(49,81,67)(50,82,68)(51,83,69)(52,84,70)(53,85,71)(54,86,72)(55,87,73)(56,88,74)(57,89,75)(58,90,61)(59,76,62)(60,77,63), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90), (1,60)(2,59)(3,58)(4,57)(5,56)(6,55)(7,54)(8,53)(9,52)(10,51)(11,50)(12,49)(13,48)(14,47)(15,46)(16,80)(17,79)(18,78)(19,77)(20,76)(21,90)(22,89)(23,88)(24,87)(25,86)(26,85)(27,84)(28,83)(29,82)(30,81)(31,71)(32,70)(33,69)(34,68)(35,67)(36,66)(37,65)(38,64)(39,63)(40,62)(41,61)(42,75)(43,74)(44,73)(45,72)>;

G:=Group( (1,46)(2,47)(3,48)(4,49)(5,50)(6,51)(7,52)(8,53)(9,54)(10,55)(11,56)(12,57)(13,58)(14,59)(15,60)(16,61)(17,62)(18,63)(19,64)(20,65)(21,66)(22,67)(23,68)(24,69)(25,70)(26,71)(27,72)(28,73)(29,74)(30,75)(31,85)(32,86)(33,87)(34,88)(35,89)(36,90)(37,76)(38,77)(39,78)(40,79)(41,80)(42,81)(43,82)(44,83)(45,84), (1,39,19)(2,40,20)(3,41,21)(4,42,22)(5,43,23)(6,44,24)(7,45,25)(8,31,26)(9,32,27)(10,33,28)(11,34,29)(12,35,30)(13,36,16)(14,37,17)(15,38,18)(46,78,64)(47,79,65)(48,80,66)(49,81,67)(50,82,68)(51,83,69)(52,84,70)(53,85,71)(54,86,72)(55,87,73)(56,88,74)(57,89,75)(58,90,61)(59,76,62)(60,77,63), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90), (1,60)(2,59)(3,58)(4,57)(5,56)(6,55)(7,54)(8,53)(9,52)(10,51)(11,50)(12,49)(13,48)(14,47)(15,46)(16,80)(17,79)(18,78)(19,77)(20,76)(21,90)(22,89)(23,88)(24,87)(25,86)(26,85)(27,84)(28,83)(29,82)(30,81)(31,71)(32,70)(33,69)(34,68)(35,67)(36,66)(37,65)(38,64)(39,63)(40,62)(41,61)(42,75)(43,74)(44,73)(45,72) );

G=PermutationGroup([[(1,46),(2,47),(3,48),(4,49),(5,50),(6,51),(7,52),(8,53),(9,54),(10,55),(11,56),(12,57),(13,58),(14,59),(15,60),(16,61),(17,62),(18,63),(19,64),(20,65),(21,66),(22,67),(23,68),(24,69),(25,70),(26,71),(27,72),(28,73),(29,74),(30,75),(31,85),(32,86),(33,87),(34,88),(35,89),(36,90),(37,76),(38,77),(39,78),(40,79),(41,80),(42,81),(43,82),(44,83),(45,84)], [(1,39,19),(2,40,20),(3,41,21),(4,42,22),(5,43,23),(6,44,24),(7,45,25),(8,31,26),(9,32,27),(10,33,28),(11,34,29),(12,35,30),(13,36,16),(14,37,17),(15,38,18),(46,78,64),(47,79,65),(48,80,66),(49,81,67),(50,82,68),(51,83,69),(52,84,70),(53,85,71),(54,86,72),(55,87,73),(56,88,74),(57,89,75),(58,90,61),(59,76,62),(60,77,63)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)], [(1,60),(2,59),(3,58),(4,57),(5,56),(6,55),(7,54),(8,53),(9,52),(10,51),(11,50),(12,49),(13,48),(14,47),(15,46),(16,80),(17,79),(18,78),(19,77),(20,76),(21,90),(22,89),(23,88),(24,87),(25,86),(26,85),(27,84),(28,83),(29,82),(30,81),(31,71),(32,70),(33,69),(34,68),(35,67),(36,66),(37,65),(38,64),(39,63),(40,62),(41,61),(42,75),(43,74),(44,73),(45,72)]])

C2×C3⋊D15 is a maximal subgroup of
C30.D6  C327D20  C15⋊D12  C6.D30  C3⋊D60  D62D15  C60⋊S3  C62⋊D5  C2×D5×C3⋊S3  C2×S3×D15
C2×C3⋊D15 is a maximal quotient of
C12.D15  C60⋊S3  C62⋊D5

48 conjugacy classes

 class 1 2A 2B 2C 3A 3B 3C 3D 5A 5B 6A 6B 6C 6D 10A 10B 15A ··· 15P 30A ··· 30P order 1 2 2 2 3 3 3 3 5 5 6 6 6 6 10 10 15 ··· 15 30 ··· 30 size 1 1 45 45 2 2 2 2 2 2 2 2 2 2 2 2 2 ··· 2 2 ··· 2

48 irreducible representations

 dim 1 1 1 2 2 2 2 2 2 type + + + + + + + + + image C1 C2 C2 S3 D5 D6 D10 D15 D30 kernel C2×C3⋊D15 C3⋊D15 C3×C30 C30 C3×C6 C15 C32 C6 C3 # reps 1 2 1 4 2 4 2 16 16

Matrix representation of C2×C3⋊D15 in GL6(𝔽31)

 30 0 0 0 0 0 0 30 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1
,
 1 0 0 0 0 0 0 1 0 0 0 0 0 0 29 25 0 0 0 0 16 1 0 0 0 0 0 0 19 3 0 0 0 0 28 11
,
 13 13 0 0 0 0 18 30 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 22 27 0 0 0 0 4 12
,
 27 22 0 0 0 0 12 4 0 0 0 0 0 0 1 0 0 0 0 0 15 30 0 0 0 0 0 0 18 18 0 0 0 0 1 13

G:=sub<GL(6,GF(31))| [30,0,0,0,0,0,0,30,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,29,16,0,0,0,0,25,1,0,0,0,0,0,0,19,28,0,0,0,0,3,11],[13,18,0,0,0,0,13,30,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,22,4,0,0,0,0,27,12],[27,12,0,0,0,0,22,4,0,0,0,0,0,0,1,15,0,0,0,0,0,30,0,0,0,0,0,0,18,1,0,0,0,0,18,13] >;

C2×C3⋊D15 in GAP, Magma, Sage, TeX

C_2\times C_3\rtimes D_{15}
% in TeX

G:=Group("C2xC3:D15");
// GroupNames label

G:=SmallGroup(180,36);
// by ID

G=gap.SmallGroup(180,36);
# by ID

G:=PCGroup([5,-2,-2,-3,-3,-5,122,483,3604]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^3=c^15=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽