Extensions 1→N→G→Q→1 with N=C4 and Q=C2xC46

Direct product G=NxQ with N=C4 and Q=C2xC46
dρLabelID
C22xC92368C2^2xC92368,37

Semidirect products G=N:Q with N=C4 and Q=C2xC46
extensionφ:Q→Aut NdρLabelID
C4:(C2xC46) = D4xC46φ: C2xC46/C46C2 ⊆ Aut C4184C4:(C2xC46)368,38

Non-split extensions G=N.Q with N=C4 and Q=C2xC46
extensionφ:Q→Aut NdρLabelID
C4.1(C2xC46) = D8xC23φ: C2xC46/C46C2 ⊆ Aut C41842C4.1(C2xC46)368,24
C4.2(C2xC46) = SD16xC23φ: C2xC46/C46C2 ⊆ Aut C41842C4.2(C2xC46)368,25
C4.3(C2xC46) = Q16xC23φ: C2xC46/C46C2 ⊆ Aut C43682C4.3(C2xC46)368,26
C4.4(C2xC46) = Q8xC46φ: C2xC46/C46C2 ⊆ Aut C4368C4.4(C2xC46)368,39
C4.5(C2xC46) = C4oD4xC23φ: C2xC46/C46C2 ⊆ Aut C41842C4.5(C2xC46)368,40
C4.6(C2xC46) = M4(2)xC23central extension (φ=1)1842C4.6(C2xC46)368,23

׿
x
:
Z
F
o
wr
Q
<