direct product, abelian, monomial, 2-elementary
Aliases: C2×C46, SmallGroup(92,4)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2×C46 |
C1 — C2×C46 |
C1 — C2×C46 |
Generators and relations for C2×C46
G = < a,b | a2=b46=1, ab=ba >
(1 83)(2 84)(3 85)(4 86)(5 87)(6 88)(7 89)(8 90)(9 91)(10 92)(11 47)(12 48)(13 49)(14 50)(15 51)(16 52)(17 53)(18 54)(19 55)(20 56)(21 57)(22 58)(23 59)(24 60)(25 61)(26 62)(27 63)(28 64)(29 65)(30 66)(31 67)(32 68)(33 69)(34 70)(35 71)(36 72)(37 73)(38 74)(39 75)(40 76)(41 77)(42 78)(43 79)(44 80)(45 81)(46 82)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46)(47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92)
G:=sub<Sym(92)| (1,83)(2,84)(3,85)(4,86)(5,87)(6,88)(7,89)(8,90)(9,91)(10,92)(11,47)(12,48)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,55)(20,56)(21,57)(22,58)(23,59)(24,60)(25,61)(26,62)(27,63)(28,64)(29,65)(30,66)(31,67)(32,68)(33,69)(34,70)(35,71)(36,72)(37,73)(38,74)(39,75)(40,76)(41,77)(42,78)(43,79)(44,80)(45,81)(46,82), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)>;
G:=Group( (1,83)(2,84)(3,85)(4,86)(5,87)(6,88)(7,89)(8,90)(9,91)(10,92)(11,47)(12,48)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,55)(20,56)(21,57)(22,58)(23,59)(24,60)(25,61)(26,62)(27,63)(28,64)(29,65)(30,66)(31,67)(32,68)(33,69)(34,70)(35,71)(36,72)(37,73)(38,74)(39,75)(40,76)(41,77)(42,78)(43,79)(44,80)(45,81)(46,82), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92) );
G=PermutationGroup([[(1,83),(2,84),(3,85),(4,86),(5,87),(6,88),(7,89),(8,90),(9,91),(10,92),(11,47),(12,48),(13,49),(14,50),(15,51),(16,52),(17,53),(18,54),(19,55),(20,56),(21,57),(22,58),(23,59),(24,60),(25,61),(26,62),(27,63),(28,64),(29,65),(30,66),(31,67),(32,68),(33,69),(34,70),(35,71),(36,72),(37,73),(38,74),(39,75),(40,76),(41,77),(42,78),(43,79),(44,80),(45,81),(46,82)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46),(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)]])
C2×C46 is a maximal subgroup of
C23⋊D4
92 conjugacy classes
class | 1 | 2A | 2B | 2C | 23A | ··· | 23V | 46A | ··· | 46BN |
order | 1 | 2 | 2 | 2 | 23 | ··· | 23 | 46 | ··· | 46 |
size | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
92 irreducible representations
dim | 1 | 1 | 1 | 1 |
type | + | + | ||
image | C1 | C2 | C23 | C46 |
kernel | C2×C46 | C46 | C22 | C2 |
# reps | 1 | 3 | 22 | 66 |
Matrix representation of C2×C46 ►in GL2(𝔽47) generated by
46 | 0 |
0 | 1 |
17 | 0 |
0 | 5 |
G:=sub<GL(2,GF(47))| [46,0,0,1],[17,0,0,5] >;
C2×C46 in GAP, Magma, Sage, TeX
C_2\times C_{46}
% in TeX
G:=Group("C2xC46");
// GroupNames label
G:=SmallGroup(92,4);
// by ID
G=gap.SmallGroup(92,4);
# by ID
G:=PCGroup([3,-2,-2,-23]);
// Polycyclic
G:=Group<a,b|a^2=b^46=1,a*b=b*a>;
// generators/relations
Export