Extensions 1→N→G→Q→1 with N=C20 and Q=C3×S3

Direct product G=N×Q with N=C20 and Q=C3×S3

Semidirect products G=N:Q with N=C20 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C201(C3×S3) = C3×D60φ: C3×S3/C32C2 ⊆ Aut C201202C20:1(C3xS3)360,102
C202(C3×S3) = C12×D15φ: C3×S3/C32C2 ⊆ Aut C201202C20:2(C3xS3)360,101
C203(C3×S3) = C15×D12φ: C3×S3/C32C2 ⊆ Aut C201202C20:3(C3xS3)360,97

Non-split extensions G=N.Q with N=C20 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C20.1(C3×S3) = C3×Dic30φ: C3×S3/C32C2 ⊆ Aut C201202C20.1(C3xS3)360,100
C20.2(C3×S3) = C3×C153C8φ: C3×S3/C32C2 ⊆ Aut C201202C20.2(C3xS3)360,35
C20.3(C3×S3) = C15×Dic6φ: C3×S3/C32C2 ⊆ Aut C201202C20.3(C3xS3)360,95
C20.4(C3×S3) = C15×C3⋊C8central extension (φ=1)1202C20.4(C3xS3)360,34