Extensions 1→N→G→Q→1 with N=C22 and Q=D46

Direct product G=N×Q with N=C22 and Q=D46

Semidirect products G=N:Q with N=C22 and Q=D46
extensionφ:Q→Aut NdρLabelID
C221D46 = D4×D23φ: D46/D23C2 ⊆ Aut C22924+C2^2:1D46368,31
C222D46 = C2×C23⋊D4φ: D46/C46C2 ⊆ Aut C22184C2^2:2D46368,36

Non-split extensions G=N.Q with N=C22 and Q=D46
extensionφ:Q→Aut NdρLabelID
C22.1D46 = D42D23φ: D46/D23C2 ⊆ Aut C221844-C2^2.1D46368,32
C22.2D46 = D925C2φ: D46/C46C2 ⊆ Aut C221842C2^2.2D46368,30
C22.3D46 = C4×Dic23central extension (φ=1)368C2^2.3D46368,10
C22.4D46 = Dic23⋊C4central extension (φ=1)368C2^2.4D46368,11
C22.5D46 = C92⋊C4central extension (φ=1)368C2^2.5D46368,12
C22.6D46 = D46⋊C4central extension (φ=1)184C2^2.6D46368,13
C22.7D46 = C23.D23central extension (φ=1)184C2^2.7D46368,18
C22.8D46 = C2×Dic46central extension (φ=1)368C2^2.8D46368,27
C22.9D46 = C2×C4×D23central extension (φ=1)184C2^2.9D46368,28
C22.10D46 = C2×D92central extension (φ=1)184C2^2.10D46368,29
C22.11D46 = C22×Dic23central extension (φ=1)368C2^2.11D46368,35