Extensions 1→N→G→Q→1 with N=C3⋊Dic3 and Q=C10

Direct product G=N×Q with N=C3⋊Dic3 and Q=C10
dρLabelID
C10×C3⋊Dic3360C10xC3:Dic3360,108

Semidirect products G=N:Q with N=C3⋊Dic3 and Q=C10
extensionφ:Q→Out NdρLabelID
C3⋊Dic31C10 = C5×S3×Dic3φ: C10/C5C2 ⊆ Out C3⋊Dic31204C3:Dic3:1C10360,72
C3⋊Dic32C10 = C5×D6⋊S3φ: C10/C5C2 ⊆ Out C3⋊Dic31204C3:Dic3:2C10360,74
C3⋊Dic33C10 = C5×C327D4φ: C10/C5C2 ⊆ Out C3⋊Dic3180C3:Dic3:3C10360,109
C3⋊Dic34C10 = C3⋊S3×C20φ: trivial image180C3:Dic3:4C10360,106

Non-split extensions G=N.Q with N=C3⋊Dic3 and Q=C10
extensionφ:Q→Out NdρLabelID
C3⋊Dic3.1C10 = C5×C322C8φ: C10/C5C2 ⊆ Out C3⋊Dic31204C3:Dic3.1C10360,55
C3⋊Dic3.2C10 = C5×C322Q8φ: C10/C5C2 ⊆ Out C3⋊Dic31204C3:Dic3.2C10360,76
C3⋊Dic3.3C10 = C5×C324Q8φ: C10/C5C2 ⊆ Out C3⋊Dic3360C3:Dic3.3C10360,105

׿
×
𝔽