metacyclic, supersoluble, monomial, Z-group, 3-hyperelementary
Aliases: C127⋊C3, SmallGroup(381,1)
Series: Derived ►Chief ►Lower central ►Upper central
C127 — C127⋊C3 |
Generators and relations for C127⋊C3
G = < a,b | a127=b3=1, bab-1=a19 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127)
(2 108 20)(3 88 39)(4 68 58)(5 48 77)(6 28 96)(7 8 115)(9 95 26)(10 75 45)(11 55 64)(12 35 83)(13 15 102)(14 122 121)(16 82 32)(17 62 51)(18 42 70)(19 22 89)(21 109 127)(23 69 38)(24 49 57)(25 29 76)(27 116 114)(30 56 44)(31 36 63)(33 123 101)(34 103 120)(37 43 50)(40 110 107)(41 90 126)(46 117 94)(47 97 113)(52 124 81)(53 104 100)(54 84 119)(59 111 87)(60 91 106)(61 71 125)(65 118 74)(66 98 93)(67 78 112)(72 105 80)(73 85 99)(79 92 86)
G:=sub<Sym(127)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127), (2,108,20)(3,88,39)(4,68,58)(5,48,77)(6,28,96)(7,8,115)(9,95,26)(10,75,45)(11,55,64)(12,35,83)(13,15,102)(14,122,121)(16,82,32)(17,62,51)(18,42,70)(19,22,89)(21,109,127)(23,69,38)(24,49,57)(25,29,76)(27,116,114)(30,56,44)(31,36,63)(33,123,101)(34,103,120)(37,43,50)(40,110,107)(41,90,126)(46,117,94)(47,97,113)(52,124,81)(53,104,100)(54,84,119)(59,111,87)(60,91,106)(61,71,125)(65,118,74)(66,98,93)(67,78,112)(72,105,80)(73,85,99)(79,92,86)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127), (2,108,20)(3,88,39)(4,68,58)(5,48,77)(6,28,96)(7,8,115)(9,95,26)(10,75,45)(11,55,64)(12,35,83)(13,15,102)(14,122,121)(16,82,32)(17,62,51)(18,42,70)(19,22,89)(21,109,127)(23,69,38)(24,49,57)(25,29,76)(27,116,114)(30,56,44)(31,36,63)(33,123,101)(34,103,120)(37,43,50)(40,110,107)(41,90,126)(46,117,94)(47,97,113)(52,124,81)(53,104,100)(54,84,119)(59,111,87)(60,91,106)(61,71,125)(65,118,74)(66,98,93)(67,78,112)(72,105,80)(73,85,99)(79,92,86) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127)], [(2,108,20),(3,88,39),(4,68,58),(5,48,77),(6,28,96),(7,8,115),(9,95,26),(10,75,45),(11,55,64),(12,35,83),(13,15,102),(14,122,121),(16,82,32),(17,62,51),(18,42,70),(19,22,89),(21,109,127),(23,69,38),(24,49,57),(25,29,76),(27,116,114),(30,56,44),(31,36,63),(33,123,101),(34,103,120),(37,43,50),(40,110,107),(41,90,126),(46,117,94),(47,97,113),(52,124,81),(53,104,100),(54,84,119),(59,111,87),(60,91,106),(61,71,125),(65,118,74),(66,98,93),(67,78,112),(72,105,80),(73,85,99),(79,92,86)]])
45 conjugacy classes
class | 1 | 3A | 3B | 127A | ··· | 127AP |
order | 1 | 3 | 3 | 127 | ··· | 127 |
size | 1 | 127 | 127 | 3 | ··· | 3 |
45 irreducible representations
dim | 1 | 1 | 3 |
type | + | ||
image | C1 | C3 | C127⋊C3 |
kernel | C127⋊C3 | C127 | C1 |
# reps | 1 | 2 | 42 |
Matrix representation of C127⋊C3 ►in GL3(𝔽2287) generated by
1160 | 1 | 0 |
1396 | 0 | 1 |
1 | 0 | 0 |
1 | 126 | 1822 |
0 | 313 | 1664 |
0 | 1795 | 1973 |
G:=sub<GL(3,GF(2287))| [1160,1396,1,1,0,0,0,1,0],[1,0,0,126,313,1795,1822,1664,1973] >;
C127⋊C3 in GAP, Magma, Sage, TeX
C_{127}\rtimes C_3
% in TeX
G:=Group("C127:C3");
// GroupNames label
G:=SmallGroup(381,1);
// by ID
G=gap.SmallGroup(381,1);
# by ID
G:=PCGroup([2,-3,-127,1285]);
// Polycyclic
G:=Group<a,b|a^127=b^3=1,b*a*b^-1=a^19>;
// generators/relations
Export