Extensions 1→N→G→Q→1 with N=C2xC5:D5 and Q=C4

Direct product G=NxQ with N=C2xC5:D5 and Q=C4
dρLabelID
C2xC4xC5:D5200C2xC4xC5:D5400,192

Semidirect products G=N:Q with N=C2xC5:D5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2xC5:D5):1C4 = D5.D20φ: C4/C1C4 ⊆ Out C2xC5:D5408+(C2xC5:D5):1C4400,118
(C2xC5:D5):2C4 = C2xD5xF5φ: C4/C1C4 ⊆ Out C2xC5:D5408+(C2xC5:D5):2C4400,209
(C2xC5:D5):3C4 = C10.D20φ: C4/C2C2 ⊆ Out C2xC5:D540(C2xC5:D5):3C4400,73
(C2xC5:D5):4C4 = C10.11D20φ: C4/C2C2 ⊆ Out C2xC5:D5200(C2xC5:D5):4C4400,102
(C2xC5:D5):5C4 = C2xDic5:2D5φ: C4/C2C2 ⊆ Out C2xC5:D540(C2xC5:D5):5C4400,175
(C2xC5:D5):6C4 = C102:C4φ: C4/C2C2 ⊆ Out C2xC5:D5100(C2xC5:D5):6C4400,155
(C2xC5:D5):7C4 = C102:4C4φ: C4/C2C2 ⊆ Out C2xC5:D5204+(C2xC5:D5):7C4400,162
(C2xC5:D5):8C4 = C22xC5:F5φ: C4/C2C2 ⊆ Out C2xC5:D5100(C2xC5:D5):8C4400,216
(C2xC5:D5):9C4 = C22xC52:C4φ: C4/C2C2 ⊆ Out C2xC5:D540(C2xC5:D5):9C4400,217

Non-split extensions G=N.Q with N=C2xC5:D5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2xC5:D5).1C4 = Dic5.4F5φ: C4/C1C4 ⊆ Out C2xC5:D5408+(C2xC5:D5).1C4400,121
(C2xC5:D5).2C4 = Dic5.F5φ: C4/C1C4 ⊆ Out C2xC5:D5408+(C2xC5:D5).2C4400,123
(C2xC5:D5).3C4 = C2xC52:C8φ: C4/C1C4 ⊆ Out C2xC5:D5208+(C2xC5:D5).3C4400,208
(C2xC5:D5).4C4 = C20.29D10φ: C4/C2C2 ⊆ Out C2xC5:D5404(C2xC5:D5).4C4400,61
(C2xC5:D5).5C4 = C20.31D10φ: C4/C2C2 ⊆ Out C2xC5:D5404(C2xC5:D5).5C4400,63
(C2xC5:D5).6C4 = C40:D5φ: C4/C2C2 ⊆ Out C2xC5:D5200(C2xC5:D5).6C4400,93
(C2xC5:D5).7C4 = C20.F5φ: C4/C2C2 ⊆ Out C2xC5:D5200(C2xC5:D5).7C4400,149
(C2xC5:D5).8C4 = C52:7M4(2)φ: C4/C2C2 ⊆ Out C2xC5:D5200(C2xC5:D5).8C4400,150
(C2xC5:D5).9C4 = C20.11F5φ: C4/C2C2 ⊆ Out C2xC5:D5404(C2xC5:D5).9C4400,156
(C2xC5:D5).10C4 = C52:8M4(2)φ: C4/C2C2 ⊆ Out C2xC5:D5404(C2xC5:D5).10C4400,157
(C2xC5:D5).11C4 = C8xC5:D5φ: trivial image200(C2xC5:D5).11C4400,92

׿
x
:
Z
F
o
wr
Q
<