Extensions 1→N→G→Q→1 with N=C2×C5⋊D5 and Q=C4

Direct product G=N×Q with N=C2×C5⋊D5 and Q=C4
dρLabelID
C2×C4×C5⋊D5200C2xC4xC5:D5400,192

Semidirect products G=N:Q with N=C2×C5⋊D5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×C5⋊D5)⋊1C4 = D5.D20φ: C4/C1C4 ⊆ Out C2×C5⋊D5408+(C2xC5:D5):1C4400,118
(C2×C5⋊D5)⋊2C4 = C2×D5×F5φ: C4/C1C4 ⊆ Out C2×C5⋊D5408+(C2xC5:D5):2C4400,209
(C2×C5⋊D5)⋊3C4 = C10.D20φ: C4/C2C2 ⊆ Out C2×C5⋊D540(C2xC5:D5):3C4400,73
(C2×C5⋊D5)⋊4C4 = C10.11D20φ: C4/C2C2 ⊆ Out C2×C5⋊D5200(C2xC5:D5):4C4400,102
(C2×C5⋊D5)⋊5C4 = C2×Dic52D5φ: C4/C2C2 ⊆ Out C2×C5⋊D540(C2xC5:D5):5C4400,175
(C2×C5⋊D5)⋊6C4 = C102⋊C4φ: C4/C2C2 ⊆ Out C2×C5⋊D5100(C2xC5:D5):6C4400,155
(C2×C5⋊D5)⋊7C4 = C1024C4φ: C4/C2C2 ⊆ Out C2×C5⋊D5204+(C2xC5:D5):7C4400,162
(C2×C5⋊D5)⋊8C4 = C22×C5⋊F5φ: C4/C2C2 ⊆ Out C2×C5⋊D5100(C2xC5:D5):8C4400,216
(C2×C5⋊D5)⋊9C4 = C22×C52⋊C4φ: C4/C2C2 ⊆ Out C2×C5⋊D540(C2xC5:D5):9C4400,217

Non-split extensions G=N.Q with N=C2×C5⋊D5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×C5⋊D5).1C4 = Dic5.4F5φ: C4/C1C4 ⊆ Out C2×C5⋊D5408+(C2xC5:D5).1C4400,121
(C2×C5⋊D5).2C4 = Dic5.F5φ: C4/C1C4 ⊆ Out C2×C5⋊D5408+(C2xC5:D5).2C4400,123
(C2×C5⋊D5).3C4 = C2×C52⋊C8φ: C4/C1C4 ⊆ Out C2×C5⋊D5208+(C2xC5:D5).3C4400,208
(C2×C5⋊D5).4C4 = C20.29D10φ: C4/C2C2 ⊆ Out C2×C5⋊D5404(C2xC5:D5).4C4400,61
(C2×C5⋊D5).5C4 = C20.31D10φ: C4/C2C2 ⊆ Out C2×C5⋊D5404(C2xC5:D5).5C4400,63
(C2×C5⋊D5).6C4 = C40⋊D5φ: C4/C2C2 ⊆ Out C2×C5⋊D5200(C2xC5:D5).6C4400,93
(C2×C5⋊D5).7C4 = C20.F5φ: C4/C2C2 ⊆ Out C2×C5⋊D5200(C2xC5:D5).7C4400,149
(C2×C5⋊D5).8C4 = C527M4(2)φ: C4/C2C2 ⊆ Out C2×C5⋊D5200(C2xC5:D5).8C4400,150
(C2×C5⋊D5).9C4 = C20.11F5φ: C4/C2C2 ⊆ Out C2×C5⋊D5404(C2xC5:D5).9C4400,156
(C2×C5⋊D5).10C4 = C528M4(2)φ: C4/C2C2 ⊆ Out C2×C5⋊D5404(C2xC5:D5).10C4400,157
(C2×C5⋊D5).11C4 = C8×C5⋊D5φ: trivial image200(C2xC5:D5).11C4400,92

׿
×
𝔽