direct product, metabelian, supersoluble, monomial, A-group
Aliases: C2×C5⋊D5, C10⋊D5, C5⋊2D10, C52⋊3C22, (C5×C10)⋊2C2, SmallGroup(100,15)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C52 — C5⋊D5 — C2×C5⋊D5 |
C52 — C2×C5⋊D5 |
Generators and relations for C2×C5⋊D5
G = < a,b,c,d | a2=b5=c5=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b-1, dcd=c-1 >
Character table of C2×C5⋊D5
class | 1 | 2A | 2B | 2C | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 5I | 5J | 5K | 5L | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 10I | 10J | 10K | 10L | |
size | 1 | 1 | 25 | 25 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | -2 | 0 | 0 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | -2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ6 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ7 | 2 | -2 | 0 | 0 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | -2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ8 | 2 | -2 | 0 | 0 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | -2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -2 | 1-√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ9 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ10 | 2 | -2 | 0 | 0 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | -2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -2 | 1+√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ11 | 2 | -2 | 0 | 0 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | 2 | 2 | -1-√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | -2 | -2 | orthogonal lifted from D10 |
ρ12 | 2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -2 | 1-√5/2 | 1-√5/2 | -2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ13 | 2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ14 | 2 | 2 | 0 | 0 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ15 | 2 | 2 | 0 | 0 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | 2 | 2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | 2 | 2 | orthogonal lifted from D5 |
ρ16 | 2 | 2 | 0 | 0 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ17 | 2 | -2 | 0 | 0 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ18 | 2 | 2 | 0 | 0 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ19 | 2 | -2 | 0 | 0 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ20 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ21 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ22 | 2 | -2 | 0 | 0 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | 2 | 2 | -1+√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | -2 | -2 | orthogonal lifted from D10 |
ρ23 | 2 | 2 | 0 | 0 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ24 | 2 | 2 | 0 | 0 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ25 | 2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -2 | 1+√5/2 | 1+√5/2 | -2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ26 | 2 | 2 | 0 | 0 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ27 | 2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ28 | 2 | 2 | 0 | 0 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | 2 | 2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | 2 | 2 | orthogonal lifted from D5 |
(1 29)(2 30)(3 26)(4 27)(5 28)(6 31)(7 32)(8 33)(9 34)(10 35)(11 36)(12 37)(13 38)(14 39)(15 40)(16 41)(17 42)(18 43)(19 44)(20 45)(21 46)(22 47)(23 48)(24 49)(25 50)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)
(1 24 19 14 9)(2 25 20 15 10)(3 21 16 11 6)(4 22 17 12 7)(5 23 18 13 8)(26 46 41 36 31)(27 47 42 37 32)(28 48 43 38 33)(29 49 44 39 34)(30 50 45 40 35)
(1 9)(2 8)(3 7)(4 6)(5 10)(11 22)(12 21)(13 25)(14 24)(15 23)(16 17)(18 20)(26 32)(27 31)(28 35)(29 34)(30 33)(36 47)(37 46)(38 50)(39 49)(40 48)(41 42)(43 45)
G:=sub<Sym(50)| (1,29)(2,30)(3,26)(4,27)(5,28)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,49)(25,50), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50), (1,24,19,14,9)(2,25,20,15,10)(3,21,16,11,6)(4,22,17,12,7)(5,23,18,13,8)(26,46,41,36,31)(27,47,42,37,32)(28,48,43,38,33)(29,49,44,39,34)(30,50,45,40,35), (1,9)(2,8)(3,7)(4,6)(5,10)(11,22)(12,21)(13,25)(14,24)(15,23)(16,17)(18,20)(26,32)(27,31)(28,35)(29,34)(30,33)(36,47)(37,46)(38,50)(39,49)(40,48)(41,42)(43,45)>;
G:=Group( (1,29)(2,30)(3,26)(4,27)(5,28)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,49)(25,50), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50), (1,24,19,14,9)(2,25,20,15,10)(3,21,16,11,6)(4,22,17,12,7)(5,23,18,13,8)(26,46,41,36,31)(27,47,42,37,32)(28,48,43,38,33)(29,49,44,39,34)(30,50,45,40,35), (1,9)(2,8)(3,7)(4,6)(5,10)(11,22)(12,21)(13,25)(14,24)(15,23)(16,17)(18,20)(26,32)(27,31)(28,35)(29,34)(30,33)(36,47)(37,46)(38,50)(39,49)(40,48)(41,42)(43,45) );
G=PermutationGroup([[(1,29),(2,30),(3,26),(4,27),(5,28),(6,31),(7,32),(8,33),(9,34),(10,35),(11,36),(12,37),(13,38),(14,39),(15,40),(16,41),(17,42),(18,43),(19,44),(20,45),(21,46),(22,47),(23,48),(24,49),(25,50)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50)], [(1,24,19,14,9),(2,25,20,15,10),(3,21,16,11,6),(4,22,17,12,7),(5,23,18,13,8),(26,46,41,36,31),(27,47,42,37,32),(28,48,43,38,33),(29,49,44,39,34),(30,50,45,40,35)], [(1,9),(2,8),(3,7),(4,6),(5,10),(11,22),(12,21),(13,25),(14,24),(15,23),(16,17),(18,20),(26,32),(27,31),(28,35),(29,34),(30,33),(36,47),(37,46),(38,50),(39,49),(40,48),(41,42),(43,45)]])
C2×C5⋊D5 is a maximal subgroup of
Dic5⋊2D5 C5⋊D20 C20⋊D5 C52⋊7D4 C2×D52
C2×C5⋊D5 is a maximal quotient of C52⋊4Q8 C20⋊D5 C52⋊7D4
Matrix representation of C2×C5⋊D5 ►in GL4(𝔽11) generated by
10 | 0 | 0 | 0 |
0 | 10 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 10 | 7 |
0 | 1 | 0 | 0 |
10 | 3 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 10 | 7 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(11))| [10,0,0,0,0,10,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,0,10,0,0,1,7],[0,10,0,0,1,3,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,10,0,0,0,7,1] >;
C2×C5⋊D5 in GAP, Magma, Sage, TeX
C_2\times C_5\rtimes D_5
% in TeX
G:=Group("C2xC5:D5");
// GroupNames label
G:=SmallGroup(100,15);
// by ID
G=gap.SmallGroup(100,15);
# by ID
G:=PCGroup([4,-2,-2,-5,-5,194,1283]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^5=c^5=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of C2×C5⋊D5 in TeX
Character table of C2×C5⋊D5 in TeX