Extensions 1→N→G→Q→1 with N=C5xDic10 and Q=C2

Direct product G=NxQ with N=C5xDic10 and Q=C2
dρLabelID
C10xDic1080C10xDic10400,181

Semidirect products G=N:Q with N=C5xDic10 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5xDic10):1C2 = D20.D5φ: C2/C1C2 ⊆ Out C5xDic10804(C5xDic10):1C2400,66
(C5xDic10):2C2 = C52:4SD16φ: C2/C1C2 ⊆ Out C5xDic10404+(C5xDic10):2C2400,68
(C5xDic10):3C2 = C5xD4.D5φ: C2/C1C2 ⊆ Out C5xDic10404(C5xDic10):3C2400,88
(C5xDic10):4C2 = D5xDic10φ: C2/C1C2 ⊆ Out C5xDic10804-(C5xDic10):4C2400,163
(C5xDic10):5C2 = D20:D5φ: C2/C1C2 ⊆ Out C5xDic10404(C5xDic10):5C2400,165
(C5xDic10):6C2 = Dic10:D5φ: C2/C1C2 ⊆ Out C5xDic10404(C5xDic10):6C2400,166
(C5xDic10):7C2 = Dic10:5D5φ: C2/C1C2 ⊆ Out C5xDic10404+(C5xDic10):7C2400,168
(C5xDic10):8C2 = C5xD4:2D5φ: C2/C1C2 ⊆ Out C5xDic10404(C5xDic10):8C2400,186
(C5xDic10):9C2 = C5xQ8xD5φ: C2/C1C2 ⊆ Out C5xDic10804(C5xDic10):9C2400,187
(C5xDic10):10C2 = C5xC40:C2φ: C2/C1C2 ⊆ Out C5xDic10802(C5xDic10):10C2400,78
(C5xDic10):11C2 = C5xC4oD20φ: trivial image402(C5xDic10):11C2400,184

Non-split extensions G=N.Q with N=C5xDic10 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5xDic10).1C2 = C52:2Q16φ: C2/C1C2 ⊆ Out C5xDic10804(C5xDic10).1C2400,69
(C5xDic10).2C2 = C52:3Q16φ: C2/C1C2 ⊆ Out C5xDic10804-(C5xDic10).2C2400,70
(C5xDic10).3C2 = C5xC5:Q16φ: C2/C1C2 ⊆ Out C5xDic10804(C5xDic10).3C2400,90
(C5xDic10).4C2 = C5xDic20φ: C2/C1C2 ⊆ Out C5xDic10802(C5xDic10).4C2400,80

׿
x
:
Z
F
o
wr
Q
<