Copied to
clipboard

G = C5xC5:Q16order 400 = 24·52

Direct product of C5 and C5:Q16

direct product, metabelian, supersoluble, monomial

Aliases: C5xC5:Q16, C52:6Q16, C20.36D10, Dic10.2C10, Q8.(C5xD5), C5:2(C5xQ16), C4.4(D5xC10), (C5xQ8).6D5, C5:2C8.1C10, C20.4(C2xC10), C10.10(C5xD4), (C5xC10).31D4, (C5xQ8).1C10, (Q8xC52).1C2, C10.32(C5:D4), (C5xC20).11C22, (C5xDic10).3C2, C2.7(C5xC5:D4), (C5xC5:2C8).4C2, SmallGroup(400,90)

Series: Derived Chief Lower central Upper central

C1C20 — C5xC5:Q16
C1C5C10C20C5xC20C5xDic10 — C5xC5:Q16
C5C10C20 — C5xC5:Q16
C1C10C20C5xQ8

Generators and relations for C5xC5:Q16
 G = < a,b,c,d | a5=b5=c8=1, d2=c4, ab=ba, ac=ca, ad=da, cbc-1=b-1, bd=db, dcd-1=c-1 >

Subgroups: 108 in 48 conjugacy classes, 22 normal (all characteristic)
Quotients: C1, C2, C22, C5, D4, D5, C10, Q16, D10, C2xC10, C5:D4, C5xD4, C5xD5, C5:Q16, C5xQ16, D5xC10, C5xC5:D4, C5xC5:Q16
2C5
2C5
2C4
10C4
2C10
2C10
5C8
5Q8
2C20
2C20
2Dic5
2C20
2C20
2C20
2C20
2C20
2C20
10C20
5Q16
2C5xQ8
2C5xQ8
5C40
5C5xQ8
2C5xDic5
2C5xC20
5C5xQ16

Smallest permutation representation of C5xC5:Q16
On 80 points
Generators in S80
(1 60 38 12 66)(2 61 39 13 67)(3 62 40 14 68)(4 63 33 15 69)(5 64 34 16 70)(6 57 35 9 71)(7 58 36 10 72)(8 59 37 11 65)(17 42 50 75 29)(18 43 51 76 30)(19 44 52 77 31)(20 45 53 78 32)(21 46 54 79 25)(22 47 55 80 26)(23 48 56 73 27)(24 41 49 74 28)
(1 60 38 12 66)(2 67 13 39 61)(3 62 40 14 68)(4 69 15 33 63)(5 64 34 16 70)(6 71 9 35 57)(7 58 36 10 72)(8 65 11 37 59)(17 42 50 75 29)(18 30 76 51 43)(19 44 52 77 31)(20 32 78 53 45)(21 46 54 79 25)(22 26 80 55 47)(23 48 56 73 27)(24 28 74 49 41)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(1 75 5 79)(2 74 6 78)(3 73 7 77)(4 80 8 76)(9 45 13 41)(10 44 14 48)(11 43 15 47)(12 42 16 46)(17 34 21 38)(18 33 22 37)(19 40 23 36)(20 39 24 35)(25 60 29 64)(26 59 30 63)(27 58 31 62)(28 57 32 61)(49 71 53 67)(50 70 54 66)(51 69 55 65)(52 68 56 72)

G:=sub<Sym(80)| (1,60,38,12,66)(2,61,39,13,67)(3,62,40,14,68)(4,63,33,15,69)(5,64,34,16,70)(6,57,35,9,71)(7,58,36,10,72)(8,59,37,11,65)(17,42,50,75,29)(18,43,51,76,30)(19,44,52,77,31)(20,45,53,78,32)(21,46,54,79,25)(22,47,55,80,26)(23,48,56,73,27)(24,41,49,74,28), (1,60,38,12,66)(2,67,13,39,61)(3,62,40,14,68)(4,69,15,33,63)(5,64,34,16,70)(6,71,9,35,57)(7,58,36,10,72)(8,65,11,37,59)(17,42,50,75,29)(18,30,76,51,43)(19,44,52,77,31)(20,32,78,53,45)(21,46,54,79,25)(22,26,80,55,47)(23,48,56,73,27)(24,28,74,49,41), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,75,5,79)(2,74,6,78)(3,73,7,77)(4,80,8,76)(9,45,13,41)(10,44,14,48)(11,43,15,47)(12,42,16,46)(17,34,21,38)(18,33,22,37)(19,40,23,36)(20,39,24,35)(25,60,29,64)(26,59,30,63)(27,58,31,62)(28,57,32,61)(49,71,53,67)(50,70,54,66)(51,69,55,65)(52,68,56,72)>;

G:=Group( (1,60,38,12,66)(2,61,39,13,67)(3,62,40,14,68)(4,63,33,15,69)(5,64,34,16,70)(6,57,35,9,71)(7,58,36,10,72)(8,59,37,11,65)(17,42,50,75,29)(18,43,51,76,30)(19,44,52,77,31)(20,45,53,78,32)(21,46,54,79,25)(22,47,55,80,26)(23,48,56,73,27)(24,41,49,74,28), (1,60,38,12,66)(2,67,13,39,61)(3,62,40,14,68)(4,69,15,33,63)(5,64,34,16,70)(6,71,9,35,57)(7,58,36,10,72)(8,65,11,37,59)(17,42,50,75,29)(18,30,76,51,43)(19,44,52,77,31)(20,32,78,53,45)(21,46,54,79,25)(22,26,80,55,47)(23,48,56,73,27)(24,28,74,49,41), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,75,5,79)(2,74,6,78)(3,73,7,77)(4,80,8,76)(9,45,13,41)(10,44,14,48)(11,43,15,47)(12,42,16,46)(17,34,21,38)(18,33,22,37)(19,40,23,36)(20,39,24,35)(25,60,29,64)(26,59,30,63)(27,58,31,62)(28,57,32,61)(49,71,53,67)(50,70,54,66)(51,69,55,65)(52,68,56,72) );

G=PermutationGroup([[(1,60,38,12,66),(2,61,39,13,67),(3,62,40,14,68),(4,63,33,15,69),(5,64,34,16,70),(6,57,35,9,71),(7,58,36,10,72),(8,59,37,11,65),(17,42,50,75,29),(18,43,51,76,30),(19,44,52,77,31),(20,45,53,78,32),(21,46,54,79,25),(22,47,55,80,26),(23,48,56,73,27),(24,41,49,74,28)], [(1,60,38,12,66),(2,67,13,39,61),(3,62,40,14,68),(4,69,15,33,63),(5,64,34,16,70),(6,71,9,35,57),(7,58,36,10,72),(8,65,11,37,59),(17,42,50,75,29),(18,30,76,51,43),(19,44,52,77,31),(20,32,78,53,45),(21,46,54,79,25),(22,26,80,55,47),(23,48,56,73,27),(24,28,74,49,41)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(1,75,5,79),(2,74,6,78),(3,73,7,77),(4,80,8,76),(9,45,13,41),(10,44,14,48),(11,43,15,47),(12,42,16,46),(17,34,21,38),(18,33,22,37),(19,40,23,36),(20,39,24,35),(25,60,29,64),(26,59,30,63),(27,58,31,62),(28,57,32,61),(49,71,53,67),(50,70,54,66),(51,69,55,65),(52,68,56,72)]])

85 conjugacy classes

class 1  2 4A4B4C5A5B5C5D5E···5N8A8B10A10B10C10D10E···10N20A20B20C20D20E···20AL20AM20AN20AO20AP40A···40H
order1244455555···5881010101010···102020202020···202020202040···40
size11242011112···2101011112···222224···42020202010···10

85 irreducible representations

dim11111111222222222244
type++++++-+-
imageC1C2C2C2C5C10C10C10D4D5Q16D10C5:D4C5xD4C5xD5C5xQ16D5xC10C5xC5:D4C5:Q16C5xC5:Q16
kernelC5xC5:Q16C5xC5:2C8C5xDic10Q8xC52C5:Q16C5:2C8Dic10C5xQ8C5xC10C5xQ8C52C20C10C10Q8C5C4C2C5C1
# reps111144441222448881628

Matrix representation of C5xC5:Q16 in GL4(F41) generated by

10000
01000
0010
0001
,
10000
03700
0010
0001
,
04000
40000
00012
001717
,
40000
04000
00347
00287
G:=sub<GL(4,GF(41))| [10,0,0,0,0,10,0,0,0,0,1,0,0,0,0,1],[10,0,0,0,0,37,0,0,0,0,1,0,0,0,0,1],[0,40,0,0,40,0,0,0,0,0,0,17,0,0,12,17],[40,0,0,0,0,40,0,0,0,0,34,28,0,0,7,7] >;

C5xC5:Q16 in GAP, Magma, Sage, TeX

C_5\times C_5\rtimes Q_{16}
% in TeX

G:=Group("C5xC5:Q16");
// GroupNames label

G:=SmallGroup(400,90);
// by ID

G=gap.SmallGroup(400,90);
# by ID

G:=PCGroup([6,-2,-2,-5,-2,-2,-5,240,265,247,1443,729,69,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^5=c^8=1,d^2=c^4,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of C5xC5:Q16 in TeX

׿
x
:
Z
F
o
wr
Q
<