Extensions 1→N→G→Q→1 with N=C5 and Q=C4×F5

Direct product G=N×Q with N=C5 and Q=C4×F5

Semidirect products G=N:Q with N=C5 and Q=C4×F5
extensionφ:Q→Aut NdρLabelID
C51(C4×F5) = C523C42φ: C4×F5/Dic5C4 ⊆ Aut C5208+C5:1(C4xF5)400,124
C52(C4×F5) = C4×C5⋊F5φ: C4×F5/C20C4 ⊆ Aut C5100C5:2(C4xF5)400,151
C53(C4×F5) = C4×C52⋊C4φ: C4×F5/C20C4 ⊆ Aut C5404C5:3(C4xF5)400,158
C54(C4×F5) = F52φ: C4×F5/F5C4 ⊆ Aut C52016+C5:4(C4xF5)400,205
C55(C4×F5) = C4×D5.D5φ: C4×F5/C4×D5C2 ⊆ Aut C5804C5:5(C4xF5)400,144
C56(C4×F5) = Dic5×F5φ: C4×F5/C2×F5C2 ⊆ Aut C5808-C5:6(C4xF5)400,117

Non-split extensions G=N.Q with N=C5 and Q=C4×F5
extensionφ:Q→Aut NdρLabelID
C5.(C4×F5) = C4×C25⋊C4φ: C4×F5/C20C4 ⊆ Aut C51004C5.(C4xF5)400,30