# Extensions 1→N→G→Q→1 with N=C5×D5 and Q=C2×C4

Direct product G=N×Q with N=C5×D5 and Q=C2×C4
dρLabelID
D5×C2×C2080D5xC2xC20400,182

Semidirect products G=N:Q with N=C5×D5 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
(C5×D5)⋊1(C2×C4) = C2×D5×F5φ: C2×C4/C2C4 ⊆ Out C5×D5408+(C5xD5):1(C2xC4)400,209
(C5×D5)⋊2(C2×C4) = C2×D5⋊F5φ: C2×C4/C2C4 ⊆ Out C5×D5208+(C5xD5):2(C2xC4)400,210
(C5×D5)⋊3(C2×C4) = C4×D52φ: C2×C4/C4C2 ⊆ Out C5×D5404(C5xD5):3(C2xC4)400,169
(C5×D5)⋊4(C2×C4) = F5×C2×C10φ: C2×C4/C22C2 ⊆ Out C5×D580(C5xD5):4(C2xC4)400,214
(C5×D5)⋊5(C2×C4) = C2×D5×Dic5φ: C2×C4/C22C2 ⊆ Out C5×D580(C5xD5):5(C2xC4)400,172
(C5×D5)⋊6(C2×C4) = C22×D5.D5φ: C2×C4/C22C2 ⊆ Out C5×D580(C5xD5):6(C2xC4)400,215

Non-split extensions G=N.Q with N=C5×D5 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
(C5×D5).(C2×C4) = F52φ: C2×C4/C1C2×C4 ⊆ Out C5×D52016+(C5xD5).(C2xC4)400,205
(C5×D5).2(C2×C4) = Dic5×F5φ: C2×C4/C2C22 ⊆ Out C5×D5808-(C5xD5).2(C2xC4)400,117
(C5×D5).3(C2×C4) = C20×F5φ: C2×C4/C4C2 ⊆ Out C5×D5804(C5xD5).3(C2xC4)400,137
(C5×D5).4(C2×C4) = C4×D5.D5φ: C2×C4/C4C2 ⊆ Out C5×D5804(C5xD5).4(C2xC4)400,144

׿
×
𝔽