Copied to
clipboard

G = D5xC2xC20order 400 = 24·52

Direct product of C2xC20 and D5

direct product, metabelian, supersoluble, monomial, A-group

Aliases: D5xC2xC20, C102.27C22, C20:3(C2xC10), C10:2(C2xC20), (C10xC20):8C2, (C2xC20):5C10, (C5xC20):8C22, C5:2(C22xC20), (C2xDic5):5C10, Dic5:3(C2xC10), D10.8(C2xC10), (C2xC10).46D10, C52:10(C22xC4), C22.9(D5xC10), (C10xDic5):11C2, (C5xC10).20C23, C10.2(C22xC10), (C22xD5).4C10, C10.41(C22xD5), (C5xDic5):10C22, (D5xC10).25C22, C2.1(D5xC2xC10), (C5xC10):9(C2xC4), (D5xC2xC10).8C2, (C2xC10).11(C2xC10), SmallGroup(400,182)

Series: Derived Chief Lower central Upper central

C1C5 — D5xC2xC20
C1C5C10C5xC10D5xC10D5xC2xC10 — D5xC2xC20
C5 — D5xC2xC20
C1C2xC20

Generators and relations for D5xC2xC20
 G = < a,b,c,d | a2=b20=c5=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 292 in 124 conjugacy classes, 70 normal (22 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C5, C2xC4, C2xC4, C23, D5, C10, C10, C10, C22xC4, Dic5, C20, C20, D10, C2xC10, C2xC10, C52, C4xD5, C2xDic5, C2xC20, C2xC20, C22xD5, C22xC10, C5xD5, C5xC10, C5xC10, C2xC4xD5, C22xC20, C5xDic5, C5xC20, D5xC10, C102, D5xC20, C10xDic5, C10xC20, D5xC2xC10, D5xC2xC20
Quotients: C1, C2, C4, C22, C5, C2xC4, C23, D5, C10, C22xC4, C20, D10, C2xC10, C4xD5, C2xC20, C22xD5, C22xC10, C5xD5, C2xC4xD5, C22xC20, D5xC10, D5xC20, D5xC2xC10, D5xC2xC20

Smallest permutation representation of D5xC2xC20
On 80 points
Generators in S80
(1 36)(2 37)(3 38)(4 39)(5 40)(6 21)(7 22)(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)(16 31)(17 32)(18 33)(19 34)(20 35)(41 79)(42 80)(43 61)(44 62)(45 63)(46 64)(47 65)(48 66)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)(55 73)(56 74)(57 75)(58 76)(59 77)(60 78)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 9 17 5 13)(2 10 18 6 14)(3 11 19 7 15)(4 12 20 8 16)(21 29 37 25 33)(22 30 38 26 34)(23 31 39 27 35)(24 32 40 28 36)(41 53 45 57 49)(42 54 46 58 50)(43 55 47 59 51)(44 56 48 60 52)(61 73 65 77 69)(62 74 66 78 70)(63 75 67 79 71)(64 76 68 80 72)
(1 62)(2 63)(3 64)(4 65)(5 66)(6 67)(7 68)(8 69)(9 70)(10 71)(11 72)(12 73)(13 74)(14 75)(15 76)(16 77)(17 78)(18 79)(19 80)(20 61)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)

G:=sub<Sym(80)| (1,36)(2,37)(3,38)(4,39)(5,40)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(19,34)(20,35)(41,79)(42,80)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,73)(56,74)(57,75)(58,76)(59,77)(60,78), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,9,17,5,13)(2,10,18,6,14)(3,11,19,7,15)(4,12,20,8,16)(21,29,37,25,33)(22,30,38,26,34)(23,31,39,27,35)(24,32,40,28,36)(41,53,45,57,49)(42,54,46,58,50)(43,55,47,59,51)(44,56,48,60,52)(61,73,65,77,69)(62,74,66,78,70)(63,75,67,79,71)(64,76,68,80,72), (1,62)(2,63)(3,64)(4,65)(5,66)(6,67)(7,68)(8,69)(9,70)(10,71)(11,72)(12,73)(13,74)(14,75)(15,76)(16,77)(17,78)(18,79)(19,80)(20,61)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)>;

G:=Group( (1,36)(2,37)(3,38)(4,39)(5,40)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(19,34)(20,35)(41,79)(42,80)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,73)(56,74)(57,75)(58,76)(59,77)(60,78), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,9,17,5,13)(2,10,18,6,14)(3,11,19,7,15)(4,12,20,8,16)(21,29,37,25,33)(22,30,38,26,34)(23,31,39,27,35)(24,32,40,28,36)(41,53,45,57,49)(42,54,46,58,50)(43,55,47,59,51)(44,56,48,60,52)(61,73,65,77,69)(62,74,66,78,70)(63,75,67,79,71)(64,76,68,80,72), (1,62)(2,63)(3,64)(4,65)(5,66)(6,67)(7,68)(8,69)(9,70)(10,71)(11,72)(12,73)(13,74)(14,75)(15,76)(16,77)(17,78)(18,79)(19,80)(20,61)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48) );

G=PermutationGroup([[(1,36),(2,37),(3,38),(4,39),(5,40),(6,21),(7,22),(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30),(16,31),(17,32),(18,33),(19,34),(20,35),(41,79),(42,80),(43,61),(44,62),(45,63),(46,64),(47,65),(48,66),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72),(55,73),(56,74),(57,75),(58,76),(59,77),(60,78)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,9,17,5,13),(2,10,18,6,14),(3,11,19,7,15),(4,12,20,8,16),(21,29,37,25,33),(22,30,38,26,34),(23,31,39,27,35),(24,32,40,28,36),(41,53,45,57,49),(42,54,46,58,50),(43,55,47,59,51),(44,56,48,60,52),(61,73,65,77,69),(62,74,66,78,70),(63,75,67,79,71),(64,76,68,80,72)], [(1,62),(2,63),(3,64),(4,65),(5,66),(6,67),(7,68),(8,69),(9,70),(10,71),(11,72),(12,73),(13,74),(14,75),(15,76),(16,77),(17,78),(18,79),(19,80),(20,61),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48)]])

160 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H5A5B5C5D5E···5N10A···10L10M···10AP10AQ···10BF20A···20P20Q···20BD20BE···20BT
order122222224444444455555···510···1010···1010···1020···2020···2020···20
size111155551111555511112···21···12···25···51···12···25···5

160 irreducible representations

dim11111111111122222222
type++++++++
imageC1C2C2C2C2C4C5C10C10C10C10C20D5D10D10C4xD5C5xD5D5xC10D5xC10D5xC20
kernelD5xC2xC20D5xC20C10xDic5C10xC20D5xC2xC10D5xC10C2xC4xD5C4xD5C2xDic5C2xC20C22xD5D10C2xC20C20C2xC10C10C2xC4C4C22C2
# reps141118416444322428816832

Matrix representation of D5xC2xC20 in GL3(F41) generated by

4000
0400
0040
,
2100
040
004
,
100
0180
0016
,
4000
0025
0230
G:=sub<GL(3,GF(41))| [40,0,0,0,40,0,0,0,40],[21,0,0,0,4,0,0,0,4],[1,0,0,0,18,0,0,0,16],[40,0,0,0,0,23,0,25,0] >;

D5xC2xC20 in GAP, Magma, Sage, TeX

D_5\times C_2\times C_{20}
% in TeX

G:=Group("D5xC2xC20");
// GroupNames label

G:=SmallGroup(400,182);
// by ID

G=gap.SmallGroup(400,182);
# by ID

G:=PCGroup([6,-2,-2,-2,-5,-2,-5,194,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^20=c^5=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<